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however. The second model (II) does account for keel structure and assigns the
gaussian components of the first model respectively to two distinct physical pro-
cesses: that of local ice generation {process—S}; ef Zg, and that of the inter-
mittent, large-scale keel formation, {process K and elevation &y]. Two variants
of II are also d1st1ngu1shed here. /
The empirical basis for these’models is the underice historgram of Lyon [1],

[2], which can be interpreted to support the concept of a distinct keel structure
(Model II),-although the precise existence of the latter is subject to some dis-
pute [3]. On physical grounds it appears reasonable to treat the formation of
the comparatively small- and large-scale ice structures as separate physical pro-
cesses, each the resultant of many effectively independent forces, so that
gaussian elevations follow (at least approximately), as indicated by the Lyon
data.

- In this Report the analysis is limited to Model I and calculations of back-
scattering cross sections appropriate to intermediate and high frequencies

] (o(> 0.1 kHz), i.e., Kirchoff-based methods. The treatment here is also re-

str1cted for the moment, to zero gradient {¥¢=07 and single ice bottom surface
interactions. In most instances, the Rayleigh numbers for both components of the
underice surface are large, so that theories based soJe]y on perturbat1on tech-
niques and/or Bragg scatter are inadequate. Kee .. o ?

The construction of second-order characteristic funct1ons (c.f.'s) of the
underice profile g is accordingly required. The second-order c.f. is modeled
here by a single gauss process, whose first-order moments are those determined
from the two-component, first-order gauss process fitted to the Lyon data.
Because of the large Rayleigh numbers involved, an (artificial) splitting of the
surface wave number spectrum must be made, to separate the "rough" (i.e.,
Kirchoff) components from the Bragg (i.e., "smooth") components of the scattering
surfaces. The analytic methods and results used here are direct modifications
of the author's recent studies of scattering from moving ocean wave surfaces [4].
The present treatment is directly applicable to intermediate 0(>100 Hz) and high
frequencies o(> 1.0 kHz).

In addition to the anmalytic resu]ts for scattering cross sections developed
here for !odel I, it is found that the simple, single surface version (Model Ia)
is inadequate to account for the (much) larger empirical (back-)scatter cross
sections observed, particularly at small grazing angles (¢ = 10°) and high fre-
quencies (fj = 1 kHz). Accordingly, a two-component version (Model Ib) is pro-
posed, where now an additional, independent surface projection rides on the
single surface of Model Ia. RMS elevations O(ogx = 8-15 cm) and correlation dis-
tances O(%. = 4-7 cm) for this second surface component are required for reason-
able agreement with the data cited [5], [24]. It is emphasized that, at the
present stage of limited available data, it is the choice of parameter values,
rather than any specific analytic model form, which is critical to the potential
applicability of the model in question.

The results developed here also indicate the need for: (1), profile eleva-
tion statistics with a much finer resolution than presently available, say
O(Ag = 6 m~ 1 cm), with particular emphasis on the range 0(20 cm - 1 cm);

(2), (rms) slopes and slope statistics; (3), directional data on profile eleva-
tions; and (4), scattering results for Model II, both for those cases where a
definite keel structure exists, and for comparison with Models la,b as generated
here.
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INTERMEDIATE AND HIGH-FREQUENCY ACQUSTIC BACKSCATTERING
CROSS SECTIONS FOR WATER-ICE INTERFACES:
I. TWO-COMPONENT PROFILE MODELS*

by
David Middleton**

I. Introduction

The purpose of this study is twofold: (1), to develop several
plausible statistical-physical models of typical underice "profiles"t
of elevations, %, which can then be used (2), to obtain acoustic scat-

tering intensities and spectra. Here we shall describe two general
models of underice elevations, and use the simpler one for an initial
determination of backscatter cross sections. The extension of these
results to the more complex second model is reserved to a subsequent
study, for which the present investigation is prototypical. In addition
here, we shall 1imit our analysis to zero-gradient oceans and single
ice-bottom interactions. The emphasis here is on acoustic backscatter-
ing, but the methods described are directly extendable to bi-static
geometries.

We base both our models on the (one-dimensional) underice profile
data of Lyon [1], {2], [24]. Figure 1.1 shows these data fitted by
two (first-order) gaussian probability densities for . No attempt
has been made in this initial fitting to apply any specific "best-fit"
techniques: simple trial adjustments of means and variances, only, were
used to obtain a visually reasonable fit, which can be improved upon
but without major changes in the resulting parameter values.

Qur first model (I, and specifically Ia here) postulates two

*Work supported under contract with the Naval Underwater Systems
Center, New London, Conn., NO0O140-83-M-PL78, 1983, and in part, under
Contract NOO140-84-M-MS42, 1984.

**Contractor: Physics and Applied Mathematics, 127 E. 91 St.,

New York, NY 10128.

tWe shall use the term "profile" here interchangeably with "surface
elevation," which is a function of surface coordinates (x',y'), cf.
Fig. (2.2a)ff., e.q., ¢ = ;(ﬁ).
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independent surface processes combining in some fashion to produce a
single surface, ¢. These two processes consist, respectively, of a
comparatively small-scale [ms =4.5m, Og = o(1 m)] elevation, Cg» in
turn, which is accompanied by a larger-scale surface component, Ce

[mg = 12.5 m; o = 3.0 m]. As noted, these coéxist in some unspeci-
fied fashion geometrically, but in such a way that the distributions
(and probability densities) of Sg and Tk add*, in the manner of Figure
1.1, to give the distributions (etc.) of the total profile ¢, cf. Sec.
2.1 ff. This first model (I) does not specify keel structure as such
explicitly. On the other hand, our second model (Il) does, by identi-
fying the second (or larger-scale) gaussian elevation CK with keel struc-

ture, on which may "ride" the smaller-scale gaussian elevation component
Lg (Model IIb). Unlike Model I, the total elevation, or profile process
C, is an (appropriately weighted) sum of the independent processes CS

and gy, cf. Sec. 2.2 ff. Both these models are described analytically

in Section 2 following. Because there is some doubt as to the unambig-
uous geometrical existence of keels [3], Model I (which is the more
phenomenological of the two) may prove a useful candidate model. Decision
between them will depend both on additional data and on how well the
corresponding theoretical results agree with experiment.

In any case, we emphasize that both models are potentially capable
of handling all frequencies (above O(30-50 Hz)) of incident acoustic
radiation,as noted in Sec. 3 ff.: neither is restricted to the small
Rayleigh number cases of Bragg scatter alone [5], and each can employ
appropriate shadowing and reflection functions [4]. Apart from the fit
to the empirical data [cf. Fig. 1.1], gaussian distributions (and hence
gaussian processes ultimately) appear more reasonable than other choices.
In a fundamental way we would say that the process of surface formation
consists of the superposition of many independent effects, so that the
usual Central Limit Theorem arguments [6] apply. Moreover, the presence

*Note that this is not the same thing as the distribution (and pdf)
of the process sumz= a,zg * a55ys cf. Sec. 2 ff. See Appendix A.3 ff.,
also.
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O.30L
0.25¢
0.20
0.15
0.10

0.05

m1=4.5m

Figure 1.1: Histogram of underice profile &, from Lyon's data [1];
Ref. 4 of [2]. (Solid) curves: two component gaussian
fit; dotted line: composite gauss, ¢ = blcs+b2;K, cf.
(2.7) et seq..

of widely separated nonzero mean profiles (elevations), e.qg., mg =

4.5 m vs me = 12.5 m, Fig. 1.1 (measured from the mean ocean surface),
with appropriately small variances (os,oK), cf. Fig. 1.1, ensures the
practical vanishing of the pdf's Wigs Wik etc., in question at ¢ = 0,
as required (from the definition of the profile, cf. Fig. 2.1).*

*This latter requirement, viz. 20, has suggested that Rayleigh
processes for Sg» gK may provide appropriate models, but direct attempts
to construct Model I using such processes, as well as Tinear combinations
of zq and Tk (Model II), also indicate rather poor fits to the data, as

does the process, :2 = ;g + ;i, (7] (not shown on Fig. 1.1).
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While the tangent plane approach of [4], as used here, for example,
is applicable for fo = O(> 50 Hz), it is not suited to situations where
Ko % is not large, cf. (3.1)-(3.3). We must then use the Method of
Small Perturbations (MSP) for Tower frequencies O(S< 30 Hz) where the
Rayleigh parameter is small; see Secs. 9.1-9.6 of [11], esp. Sec. 9.6
vs. Sec. 3 of [5]; for MSP generally, see [12], Chapter 3. At these
low frequencies, the coherent-scattered energy, in the specular direc-
tion, dominates the incoherent scattered energy. This is the reverse
of the "high-frequency" or large Rayleigh number cases, where now the
surface has a large (vertical) roughness scale, so that coherence is
destroyed, even in the specular direction, and only the incoherent scat-
ter is observable, cf. (2.15)-[4] vs. (2.13)-T4]. In our present study,
as noted earlier, we shall consider only the intermediate and "high"
frequency situations, when kolC >(>) 1 is obeyed.

3.1 Scattering Cross Sections: Model Ia
Model Ia, cf. Fig. 2.2b and Sec. 2.1, consists of a single surface,

g=a,0,=4,0g cH)] (3.5)

which we arbitrarily divide into low- and high-wave number portions,

analogous to the treatment of ocean wave surfaces (Sec. 2.1, p. 6, and
Eq. 2.1 of [4]). The reason for this, of course, is that the low-wave
number part provides the "facet" or “"opiical" scatter compon®rts while
the high-wave number portion is associated with the Bragg scatter terms--
all under the condition here, (3.3), for the Kirchoff or tangent plane
method [fo 2 o(50 Hz)], cf. [13].

The scattering cross sections Sgng for the incoherent component
of reradiation are defined and discussed in Appendix A.2.1 (see also
Sec. 2.2 of [4]). For Model la, (3.5), we have here the first two
terms of (2.13)-[4] for the "high-frequency" réegimes, i.e., large

Rayleigh numbers, e.g., f_ > 0(1 kHz), cf. Table 3.1:

0

17
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Qur general conclusion from the above is that for the ice profile of

the Lyon data types [1], [5], cf. (2.9), we may consider the tangent

plane or Kirchoff method of scattering analysis to be applicable (with

appropriate corrections O(1-3 db), as usual, for small grazing angles,
cf. remarks pp. 3, 37, 44), for frequencies above O(50 Hz), and possibly

above 30 Hz, [For convenience, we shall designate the "intermediate
frequency range" as O(0.10 kHz - 1 kHz) here, with the "high-frequency
region” defined as O(>1 kHz).]

The Rayleigh numbers, Ry, for these surfaces and frequencies, are
typically (for og = 5.68 = (2.38)2 (m2), cf. (2.6)) a-d small grazing
angles, here 8o = 80° (for which cos 8,1 = 0.174):

(koocz cos 60T)2, (backscatter), cf. Eq. (A.2-12), (3.4a)

)2

(0.828 k0 R eoT = 80° s (3.4b)
which for a range of intermediate frequencies, O(30 Hz - 1 kHz), is

shown in Table 3.1 below. Frequencies 0O(30-50 Hz) are borderline for

the applicability of the Kirchoff method, at any GOT (< 90°). We note

that for small grazing angles (60T2280°), fo = (30-100+ Hz) are "low-
frequency" from the viewpoint of the Kirchoff approach, i.e., have smatl’
Rayleigh numbers, while fo = O(21 kHz) are "high-frequency," with large
Rayleigh numbers. At larger grazing angles (eoT <80°) frequencies

O( 250 Hz) are all "high-frequency" in this sense.

fo (Hz): (sec'l) Ao (m) ky = 21/X, (m'l) Rc-back’ Eq. (3.4b)
30 50 0.126 1.09* 1072
50 | T N 0209 _____|____.3.00-107% _____
| 100 15 0.419 1.20- 107}
5 200 7.5 | 0.838 4.82+ 107!
| 400 3.75 1.68 1.93
| 1 kHz 1.5 4.19 12,0
| 2 kHz 0.75 | 8.38 ; 48.1
16
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(i). The Kirchoff approach requires that koPe” () 15 or
2mp /A, >(>) 1, i.e., the local radius of surface curvature
must be large compared to the incident wavelength, Ao‘
This is equivalent to the condition

Kote >(>) 1 L. = (horizontal) correlation distance. (3.1)
(ii). For the (isotropic) bottom ice profile, (2.10b) gives the
normalized directional correlation function pc(ér). From
tables of K}(x), p. 737, [10], it is easily found that
xKy(x) = e “at x=x_, =1.65= kAr_ys so that, for

1
Ar_l = lc we have

1'65(ko/kc) >(>) 1, or (XC/XO)(1.65) >(>) 1 (3.2)

as a defining condition that the Kirchoff method is valid.

Since, empirically, k. = 0.05, we require

c

2r185) 5(5) 2, or 2.07 < 10% >(>) A,. (3.3)
(111). For f_ = 30 Hz,~ A, = 50 m, and= 2.07 * 102 >(>) 50,
which is not a very strong inequality. However, for fo =
50 Hz, A, = 30 m and 2.07 + 102 >(>) 30, which is better.
At fo = 100 Hz, Ao
which is sufficient. Moreover, defining lc according to
the e 1
e'1 = 0.368 there is still noticeable (radial) correlation

= 15 m, and the inequality is ~14:1,
-scale, cf. (3.2), is quite strict: after oc(lc) =

left. We may therefore.choose a distance such that
DC(QO.OI) = 0.01, i.e., essentially negligible surface cor-
relation, for which kcflo_01 * 6.5 (on using [10]), so that
(3.3) is modified to 2n(6.5)/0.05 = 8.16 - 10° >(5) A, which
in turn permits a lower frequency, say 20 Hz (or Ag =75 m),

for 8.16 +10%/75 * 11 >(>) 1.

15
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where again (2.14a,b) apply. Now, however,_ﬁK does not enter explicitly,
cf. (2.15). The gaussian processes CS’ CK’ described statistically by
(2.16a,b), still apply, as do the conditions (2.17). The statistics of
6K noted in (2.18) must once more be evaluated, in any case.

2.4 A Model for the Marginal Ice Zone (MIZ) (Model IIb)
Model 1Ib above is also a reasonable candidate to describe the com-

bined presence of ice and open water which is typical of the Marginal
Ice Zone (MIZ). Now we replace the keels (in A, above (2.19)) by the
(plate) 1§e, €.9., L >, L € AI’ and Cg ™G
L€ AAp ¢ A, g,

K
ocean surface,S’

g{r,t) = -i

"
[]
—t
N
o
.
iy
-
"]
-
L
-
-
™
.
—
.

(2.20)

'j_ZCS(r’t)s ‘L' > A'AI t AI )

where g = cI(L) if there is no relative motion of the ice vis-a-vis
the platform in question (cf. (2.8) et seq.). Now cs(g,t) represents
the (moving) ocean wave surface, as before, which is subject to wave
generation by the wind, in the usual way [vide Sec. 1, Sec. 2.1, of

The further development of the analysis for Models Ila,b, incliuding
the desired scattering cross sections, is reserved to a subseguent re-
i ere yi;h Model I only.

L iel .

3. Scattering Cross Sections for Model Ia

Here we make direct use of the results and derivations of the au-
thor's recent study [4]. We shall accordingly refer to specific rela-
tions therein by equation number, with -[ ] suffixed, e.g., (2.13) of
(4] becomes (2.13)-[4], etc.

Since our analysis is based on the Kirchoff or tangent plane ap-
proach, the results are mainly applicable in the intermediate through
"high frequency" ranges, which may be numerically established here from
the following argument:

14
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posed processes, then w1<k) is a sum of two separate processes, SO that
Py and Py may overlap (in wave-number) space. This partition is then
made on the basis of the relative contributions to the total process,
i.e., on an intensity basis, as indicated empirically by the parameters
Og» Ty in (2.2) and (2.16a,b):

(2). Zys Gg are independent, by the argument of Sec. 1 above;

(3). 5K is independent of Sgs Bk (and < (Sx,y)K:. the location of
the keel is independent of keel elevation, as well as of the
smaller-scale surface component, L. (2.17)

(4). 8 can be: (i), quasi-periodically distrisuted [in the

(x',y')-planel; or
(ii), entirely randomly distributed in this plane,
so that overlapping keels are possible.
In the analysis leading to scattering cross-sections (and spectra where
appropriate, i.e., moving platforms), we shall need the following sta-

1
;|
4
4
A
d
f
{
]
d
4
.
4
g
t“
,JJ
e R bttt O R A

e

.

to
"l
*d
.

-
-

tistics for GK:

again with the usual assumptions of homogeneity and isotropy, cf. (2.7)

et seq, From (2.14b) it follows that g . =1 = Mg(0,0), at least,
3 ].im - : Q ) n h g o

e T L AN

0

AK:>0. These averages will be obtained explicitly by a direct extension ]
of the author's results, Secs. 4.3, 4.5 of [6], to two dimensions (in a 1

__________5______9________ubse uent Stw—' sec. .2 ff#.—-——-_—‘ e ‘Tm_-'”‘J
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where AK is the region occupied by the keels, cf. Fig. (2.2a). [ The

| positive z-direction is upward from the reference (x,y)- and parallel
(x',y')-planes, with r = i%x +‘iyy = j*x' + jyy', etc.] In terms of
the subsequently required integrals over the domains of acoustic "illu-
mination" of the underice surface we have

Leh fA S (r,t)( )dh 5 re (A-p,) ~ fA[l - 6 (rat) 10 Jdn,  (2.14a)

(2.14b)

Here‘éK is the unit normal to the ice-keel surface component, given by

2 / 2 2
R VLG W 3 iK

B = 1G5y Lyey

(2.15)
= 5 . = g
i, when re Az ==, etc.
l The following assumptions and conditions are next imposed:
(1). Cgs Gg» and Zo, CKy’ are gauss processes, now with the c.f.'s
. 2.2 . . 2 2,.2
, Fo(ig)e = o ST (1€,,i€,)c = A o5/ 2215072 0
| 1S AR SR I
(2.16a)
Fl(ia)K =

where Mgs Ogs My, O are given (in the case of Lyon's data) by (2.3),
and we have taken account of the fact that the underice elevations are

negative in our reference system, cf. Fig. (2.2a). Here p. and p, are

S K
normalized directional covariances of these elevations. From the iso-

tropic assumptions of the empirical fit to the Lyon's profile given by

Mellen et al. [5], Pg and Py are to be obtained by some suitable parti-
tion of wl(k), (2.9), or w2(k,¢), (2.11b). If we follow the underlying
assumption of Model IIa above here that the S- and K-surfaces are super-

12
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Figure 2.2a: Model II: Two-dimensional underice profiles (z), Eq.
(2.13), with distinct keels (CK); A, are the (random)
regions, projected onto the (x,y)- ér (x',y':z=0) planes,
by the specific keel structure. Model Ila: Z. rides on
Ty Model IIb: Zg and Ly are spatially separa%e.

.~

Z ~
o = . =0
@////,////{/f W’l’/””f’%% 0 S
e Z{r,t) o

Figure 2.2b: Model I: Cross section of a (two-dimensional) underice
profile (g), without distinct keels, governed by Eqs. (2.1)-
(2.7). Model Ia has no separate roughness component;
Model Ib has an (independent) roughness component riding
on the large-scale profile.
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(gaussian) underice profiles, %, of Model I, where keel structure, as

such, is implicitly subsumed in the profile statistics, cf. Fig. 1.1.
Two variants of Model I will be examined: Model Ia, which is a single-
surface model, is the simplest éhoice, and one which we shall find needs
to be extended, to account for observed scattering cross sections. This
extension is Model Ib, which now includes an additional small-scale rough-
ness component, riding on the single-surface.

Before we continue on to the results for scattering croés sections
in Sec. 3 ff. for Model I, let us concisely describe Model II, which is
a viable alternative to Model I, at least in those interactions where a
keel structure can be identified. As in the case of Model I, two vari-
ants of Model II appear plausible: Model Ila, which is characterized
by a comparatively small-scale (small m, o) elevation process which
rides upon the (quasi-) random keel structure (large m); and Model IIb,
where the "smail-scale" profile and the keel profiles occur separately
in space. This latter form also appears reasonable for modeling the
Marginal Ice Zone (MIZ) cases.

2.2 Model Ila: A Two-Component (Two-Dimensional)

Underice Profile, with Keels

For this model we postulate that there is a distinct keel structure,
with profile component CK’ upon which "rides" the smaller-scale bottom
irreqularities, whose profile component is CS’ in the manner of Fig.
2.2a. This is to be contrasted with our unstructured two-component model
(Sec. 2.1), where no explicit keel structure is distinguished but is re-
garded as part of a single profile, Z, governed by (2.1) etc., as sketched
in Fig. 2.2b.

Accprding]y, the underice profile for our Model II can be expressed

as*
Z(rst) = =320, (0,t) + Be(r,t)oc(rot),  red o
(2.13)
= 'lzCS(Lnt) !_: € (A'AK) t AK )

*The time-dependence is indicated explicitly, to include possible
platform motion, cf. (2.8) et seq.
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from Appendix I, where Kl(x) ijs a modificed Bessel function of the second
kind. The corresponding transform relation is

uy(k), = @ jw gikdr o (br)d(ar) = Eq. (2.9), etc.

. (2.10c¢)

The associated two-dimensional wave number intensity épectrum for this
isotropic model is accordingly given by

- 2 %
wz(k,cb)C oL ]0 pc(Ar)JO(kAr)Ard(Ar) (2.11a)
. 4nC/(k§+k2)2, 0<d<2m k= k§+k§, (2.11b)
in which
2 2w ® - - - 2
o . fo do jo W, (K, p)kdk = 2 fo My (k)dk = ¢ /K < o, (2.11c)

We note that while 02

cf. Eq. (4) of [5], and Appendix I. can be ana-
tomized into the component contributions of Lgs Tyo cf. (2.5), (2.6),
it is not possible to do this for the covariance or wave number spectrum
(2.8)-(2.11) in our present Model I.

For these empirical models (2.9), (2.11) clearly oi
it should be.

tra of the profile slopes, s &

is finite, as
However, we note that the corresponding wave number spec-

v or 3z/3x, etc., are

_ 12 . < 12
M (Rag/ax = KWK 5 Hplkao)y = Ky (ko0), (2.12)
2
TX,Y
course, physically this is not acceptable, and we must therefore require

so that the mean-square slopes ¢ are logarithmically divergent. Of
a faster fall-off of the model “1,2: with wave nqmber, at the high fre-
quencies. As yet there do not appear available data which allow us to

extend the results of Fig. (2.1) beyond x0'<6 m. Consequently, we are

unable at this time to determine ocx, ; (see, however, Sec. 3 ff.).

On the whole, nevertheless, with (2.5), (2.6), (2.9), (2.10) in
(2.4) for Fl(iE)C and (2.7) for FZC we are specifically equipped to use
the author's recently developed methods and results [4], (1984) formally
to obtain the desired scattering cross-sections for the composite
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The new quantity pC is the normalized covariance of the (possibly)
relatively moving) underice surface elevation, defined by

o (ArT=18rl /v,) = ETE T, (p0E)) - Ty, 5y) (g 60 /o2

- 2y 2.
= {g(ry»t))a(r ¥or, e+ 1) - o(r,t) "oy (2.8)
Ar = romrys T = tyety

where r =.jxx +njyy is a vector in the (x,y)-reference planes, cf.

Fig. (2.2a) ff., and Yo is the (uniform) speed of the reference plat-

form. Thus, if there is platform motion, the (random) ice profile

appears to be moving, like a random wave surface.* (With no relative

motion pc(Ar,r)->p (4r,0) = Pr (4r), as expected.) Hote, as required,

when |Ar|-w, or +0: there is no "dc"-component of z in Pro and accordingly

F |p_>0 1(151)F (1&2),where F1 is not given anymore by 2.4); cf. 2.6) et seq.
Next, we use Mellen et al.'s [5] isotropic empirical fit to the

one-dimensional wave number (intensity) spectrum of the profile, Eq. (2),

[5], obtained by FFT analysis of the profile shown. in Fig. 1.1 with

"dc" (or mean) component removed. This spectrum is (See Appendix I ff.):

2)3/2;

ki = 0.013; k_ = 0.05 m L
(2.9)

(or Ac 126 m),

- _ 2
(k) TrCl/(k + k o . o

|
l
A

which is given in Figure 2.1. The standard deviation OC’ of Ty found
from the analysis of these data is 6: = 2.3 m, cf. remarks after Eq.
(2) of [5], a result which is in excellent agreement with that of our
composite model above, (2.6), namely, 9, = 2.38 = 2.4- (m). The asso-
ciated (normalized) covariance function for (2.9) is (vp = 0):

® -ik|ar), 2

pc<Ar) = g; f_m dkwl(k)ce 1 lJ-'I/ct‘z; |égl = Irz-rll = Ar (2.10a)
N 2

. fo Wi(k) cos k ar dk/ oy = kK (k.ar)ar, (2.10b)

*For random platform movement, in the general "bi-static" case of
separate moving source and receiverplatforms, see the author's 1977

paper, [9].
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From well-known results ([6], Egs. (1.30), (1.31)) we have the
associated characteristic function (c.f.)

_ - e ing-02e/2.  imE-a%E%/2
F1(1€)C = wl(;)e dg = ble + bze , (2.4)

-0

with the following first and second moments

_ . = 2 2, 2 2

- . - 2 =
g = blmS + bme = 5.1 (m); ¢°= bl(cS + ms) + bZ(GK + mK) 31.3 (m")
(2.5)
02 H ;2 72 s var ¢

L2 2 2, . 2 2
= byTg + b0y + bymg *+ bom - (bymg + bymy) (2.6)
L2 2 2
= b1°s + byoy + byby(m s'mK)
= 5.68 (n°) = (2.38)% (m?)

from (2.2). We note that if we assumed that the underice elevation g
were a composite (gaussian) sum, e.9., § = blcs + bch, then ¢ is cor-
rectly given in (2.5), but then cz # Czomp’ cf. (A.3-13). In fact, we
show in Appendix A.3 that (I), it is not possible to construct a second-
order gauss-composite process which reduces to (2.1) or (2.4).

On the other hand, we need primarily the second-order pdf (or c.f.)
of the profile z, in order to determine the desired (incoherent) back-
scatter cross section. In view of (I), Appendix A.3, remarked on above, we
must restructure our gauss-composite model to include one which has a (still
gaussian) second-order pdf (and c.f.), again because of the Central Limit
theorem argument cited in Sec. 1. Accordingly, we choose the composite
gauss process g = blcs + bch, and require it to have the same first-order
first and second moments as (2.1) above, cf. (2.5), (2.6), accepting the
rather poor first-order fit to the data, cf. Fig. 2.1. [For the coherent
scatter cross sections we would use the well-fitted results (2.1) and (2.4)
directly.] Consequently, the following second-order characteristic func-
tion, from Eq. (7.10) of [6], can be written

ig)2+ig,T-0 [g]+e0928 0 172

Faig),18500,) = e y (g = blcs+b2cK{J (2.7)

6 where we have postulated homogeneity (and stationarity) for our present
model. Here ¢ and og are given by (2.5), (2.6).
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2. Underice Surface Elevation Models: I and II
Here we lay the statistical foundation for both our Models I and II,

- referred to above in Sec. 1, although in this Report we shall use only
" Model I in carrying out our determination of the desired scattering cross
ﬁi sections. Accordingly, let us begin with Model I.

2.1 Model I: An Unstructured Two-Component Underice Profile

From our fit to the Lyon histogram illustrated in Figure 1.1 we
obtain the following first-order pdf* for the underice “profile" or sur-
face elevation

2,, 2
b -(z-m)¢/20 b -(z-m,)
LS e T
L /2no§ /ZwoK

, (2.1)

-3
—
o~
(el
g
}

where we find that, specifically,

a

= 1 = : = __a2 - = . = : = :
bl a1+a2 = 0.93; b2 a1+a2 = 0.070; a, = 0.22; 2, 0.016;
and b1+b2 = 1.00;
(2.2)
mg = 4.50 m . me = 12.5 m
Og = 1.00my ° o = 3.0m
It is clear that
/ wi(2)dg / wi(2)dg = 1 (2.3)
0 -0

here, iq view of the large means (ms, mK) and comparatively small vari-
ances, so that the "tails" of both the fitted gaussian densities are
quite negligible for £<0. Thus, the underice "profile," or elevation
r, is described by the weighted sum of two gaussian distribution {den-
sities) (which is, of course, not the same as the composite gauss process
consisting of the weighted sums of the separate elevations s Tyo

cf. Appendix A.3.) We call z here, cf. (2.1), a gauss-composite process.

*For the moment, in Model I, we regard r as positive downward; since
z is positive upward, cf. Fig. (2.2a), in the platform-underice geometry
of Section 3 ff., we will accordingly change the signs of %, etc. appropriately.
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Because of the large Rayleigh numbers involved, theories based solely

on Bragg scatter are inadequate, except at very low frequencies and/or
large grazing angles. Consequently, we must develop the first- and
second-order characteristic functions of the profile elevation . Then,
we must artificially decompose the single elevation process Z (Model Ia)
into two further (independent) processes at some sufficiently short sur-
face wavelength, or corresponding wave number kD (=2ﬂ/kD), so as to ob-
tain the scattering contributions of the 'rough' (i.e., Kirchoff "facets")
and the “smooth” (or Bragg) surface components, just as is done in the
conventional treatment of wind-wave surfaces as distinct gravity plus
capillary wave surfaces [8]. (A similar approach is used for the large-
scale surface component of Model Ib ff.)

The specific dichotomy depends, of course, on the wave number (in-
tensity) spectrum of the underice surface (cf. Eq. 2.3 and Sec. 7.3C of
[4]), examples of which are modeled in [2], [5] (Sec. 2) from empirical
data. Thus, our theoretical approach in this work is a direct extension
and modification of our earlier results [4], which provide the substan-
tive analytical foundation of the present effort. We shall for the most
part be content to present the needed final results, referring the reader
to (4] for the detailed background. What is new here vis-a-vis earlier
work [for example, [2], [5], and refs. therein] is (1), explicit statis-
tical-physical models of the underice profile, which permit an incoherent
as well as coherent scattering analysis at intermediate and high fre-
quencies; and (2), the specific results of that analysis, albeit 1imited
to Model I here. Model I itself is simplified basically to a single
gaussian process, g, now with means and variances given by those of the
first-order gauss-composite fit to the Lyon data [cf. (2.1), (2.2) et seq.]

Finally, this Report is organized as follows: Section 2 gives an
analytic description of the aforementioned two profile models (I, II),
with their pertinent statistics. Section 3 provides backscattering
cross sections of Model Ia, and Section 4 includes the extension of
Model Ia to Model Ib, to provide a possible mechanism whereby agreement

between theory and experimental data can be effected. (A full treatment
is reserved to a subsequent report.) Section 5 concludes our analysis
with a concise summary of the principal results and conditions under
which they apply. [Appendixes A.1-A.3 provide appropriate special
results and analyses.]

----------
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m 6(0) - ;2_ ? 3 <a0X+ao_y+0'oz > e 2bo OEX OL_Y
N inc R _>>1 0o Yo a__/2 2
E}_’ g 0z 8nb°oonLy
. 4 (3.6)
RN () (20 Ve Wy(20 k)
1n2 LH Lo1’inc "H'%20 %0 .

The terms in { } represent the results of the "physical-optics" cum
"perturbational" approach, i.e., here respectively the facet and Bragg
scatter terms, cf. Sec. 7.3 of [4]. The former is seen to be independent
of frequency, while the latter is a first-order Bragg component, since

05<< 1, or more precisely, R

Hc<< 1, with small correlations.*

In (3.6), N3, is a "tilt-factor," embodying the fact that the
high-wave number surface component, Tyo is tilted, i.e., presents on
the average a larger grazing angle ¢(= m/2 - eoT) toward the plane of
incident radiation. The quantity wH is the wave numner intensity spec-
trum of 2y into which the (single) profile ¢, (3.5), is dichotomized,
while UEX, Ufy are the variances of the (x,y)-slopes of the "low"-wave
number component, CL, of the underice surface in this model, cf. (3.5).
(The symbol L denotes (x,y)-plane or (x,y)-components only, and @ ox
etc., are differences of the components of the incident and reflected
waves' unit vectors, iT - igs for the basic one-reflection geometry of
this study, viz. Figs. A.2-1, A.2-2; b0 = cos eoT + cos eoR' For a de-
tailed description of the various elements of (3.6), and (3.7), (3.8)
following, see Appendix A.2, including the reflection and shadowing
factors (Rg, ;ziin Sec. 3.2 below.

For the coherent cases the scattering cross section is defined by
(A.2-5) and is found for all Rayleigh numbers, R§(> 0) such that the

Kirchoff condition (3.1)-(3.3) is obeyed, here for'f0(> 0(50 Hz)), to be

o = W (Kdk/(2m)% << 1 (m?), cf. Sec. 3.3C, Eq. 3.21) ff.

—
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() 5§ & kg o y? -bgcgkg -3k§Eu§X/A + agy/B]

= A e g
coh 1 16“2 0z (3.7)

+ 0, "high-frequer-ies," RC >>1,

here for fo = 0(= 1 kHz), cf. Table 3.1 above: very rough surfaces,
e.g., RC >>1, destroy coherence, as expected. LIn addition, since the
beam parameters A,B <<1, cf. (6.32)-[4], the second exponential also
oy =0)
is chosen.] Note that this coherent-scatter cross section depends on

ensures the vanishing of 6coh’ unless the Snell angle (aox =

the area illuminated (via Al), as distinct from the incoherent cases,
(3.6), which are always area-independent, subject, of course, to the
conditions cited in (A.2-15). Our results (3.6), (3.7) hold for ar-
bitrary directions of illumination and observation.

Various particular cases of (3.6), (3.7) can be obtained directly
by appropriate specialization, e.g., "high"- and "low"-frequency back-
and forward-(specular) scatter, etc., from the author's results, pp.
18-24 of [4] (always subject to the Kirchoff condition (3.3)-(3.4)).
Since we shall show presently [Sec. 3.3] that Model Ia, (3.5), is ap-
parently incapable of acceptable agreement with empirically measured
cross sections, we shall 1imit our treatment to the special cases of
backscatter, for which (3.6) reduces, on setting ¢oT = w/2, cf. Fig.
A.2-1, eoR = eoT’ to

" A BTk - B S b o i hse v b da i b

2 .2

} (0) L2 2 [e o (0) .

! 6inc back - Ro 52 8 cos4e * 16 2 NLH (eoT)incwH(0’2k051neoT)
: R.>>1 Mo xOLy oT m

| 0% =1/2 T T (3.8)

i

| . (0) (0)

| * %inc-L * Oinc-H fr >>1" |(3-82)

Again, the first term of (3.8) is independent of frequency, in this
"high-frequency" (RC >>]) approximation, which as noted above is the
"specular-point," facet, or geometrical acoustics solutional form of
the "full-wave" approach of Bahar and Barrick et al. [13], [14], [15],
(and also references [5], [22], [24], [31], [44] in [4]). The second

19

1
|

|



TD 7375

term of (3.8) embodies the (first-order) Bragg scatter associated with
the small-scale surface component Ly Whereas the specular-point con-
tribution, aggg_L, is the dominant part of the cross section for moder-
ate to small eoT’ it vanishes rapidly for small grazing angles (60T
large), so that in this surface model only the perturbational Bragg
term, Gggg_H, contributes. We shall use this observation in Section

3.3 below to test the applicability of our Model la, (3.5).

3.2 The Reflection, Tilt-, and Shadowing Factors:

=2 ni0) < .
B5> MH-inc® 5

With wind-wave surfaces, which are pressure release surfaces,
(pc0 water/(pc0 air = As a result the (local plane-wave) reflection
coefficient R is R -1, cf. (3.9a) ff. Moreover, since the rms wave

slopes are sma]] o(s 510 2), the tilt-factor (N(O)/lﬁ = N(O)) is like-

inc
wise small oéz 2), cf. (3.2d,e)-[4], and unless 60T> 85°, the shadowing

coefficient is always close to unity. With ice surfaces, however,

these perturbational conditions do not fully hold: as we shall see from (3.9)
be]ow at these frequencies o050 Hz), R, is +1, while quite large slopes
L(x-y) =0(<1.5) may occur. This, in turn, generates larger tilt-factors, as

we would expect, and at the same time produces more shadowing. Consequently,

we must reexamine our earlier evaluations of both the tilt-factors and

shadowing coefficients used in our wave surface analyses [4], to take

these modifications into account.

Accordingly, let us begin first with the reflection coefficient:

A. The (Plane-Wave) Reflection Coefficient, Ro
For our far-field application here the local plane-wave reflection
coefficient Ro is a reasonable approximation, even when averaged and

removed from under the integral sign in the Total Surface Spreading
Function (TSSF), cf. (A.2.7a), as in (3.6)-(3.8). Specifically, we
have

prccos 9 0T = PuCweOs eoT

R (8

0 oT) : p1C COS B, 1+ p,C,COS 857 ’ (3.9)

where (oc)I + 2 for ice and (oc)w = 1 for water, and eoT = angle of
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transmission in the ice. Since at these frequencies (perfect) internal-

reflection occurs for ice, eoT = /2, and
5 2¢0s eoT'o

0 2cos eoT+0

[For air-water interfaces (pc)I*air<< 1, and so R, £ -], as usual.] Thus,

=1, (3.9a)

Rg is our scattering cross section here, and is given by
—2_ Y = )
Ro +1=0db. (3.10)
ice

WTit- v n(0) §0)
B. "Tilt-Factors N'H-inc® MA-coh

From (8.28a)-[4], and from (7.22)-[4], (7.24)-[4], respectively,
for the incoherent and coherent cases, we can write the "tilt factors"
for Model Ia here as

w0

LH-inc (2a02)2 <:2a Ty ¥ 2o yoy ~ 20,.) :z , etc. (3.11)

0X7X

For the symmetrically distributed slopes assumed here (about Z; =z = 0),
(3.11) reduces directly to

0y . 2 2.2 2
Nipsine = (2ag,)" {(2a ) 0Lx * (zaoy) Oy * (205,07 1>
—_— (3.12a)
2 _ 7
OLx,y T Bxey
Choosing %7 = ™2, cf. Figs. A.2-1,2, we get, cf. (A.2-11),
(0) 2 2 2
NL - 1nc,¢ crjp = (20,07 [(2a)? o, + (20,)7 1. (3.12b)

Similarly, from (7.22)-[4], etc. we have

- 3 24 2,6020 24 2
,/(zaoxcx oxfy 2a,,) :> N //XGCXa0x+ Cy oy oz):>
. 0z 1

LH coh = 7 2 3
+ +
Lo+ L+og vt

(3.13)
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taking advantage of the assumed symmetrical distribution of the slopes
(where <C3> <; > =0, etc.).

Inasmuch as <¢ y = mean-square slope angles of the profile, we
have at once by definition
- 2 2 2 = '1
OLx,y = tan <oy ,y »oor | <Oy T tan T o,y (3.14)
. ' 2 -2 2k 0
Unlike surface waves, where ng=y = (5.42°10 %) or <¢>7 = 13.1°,

cf. (3.2d)-[4], for. 20 knot (mean) wind speeds, we may expect the slopes
of the bottom ice profile to be considerably larger. This is borne out
by (albeit limited) empirical data, which suggests that <62% = 0(30°),
or OEx,y = 3.33° 10'1, {16]. Consequently, we cannot replace 1 + Ci + C§
by unity in (3.13), but must evaluate the averages exactly. We continue
to assume isotropic bottom surfaces [cf. Sec. 2], e.g., oLx = OLy'
Accordingly, since T is postulated to be gaussian, in accord with our
Model I, cf. Sec. 2 above, so also are ;x’ Z ., which are likewise inde-

Yy
pendent of each other and of z. In fact, we can write explicitly

2 2 2 2 ,. 2 2
: ) e'CLx/ZOLx - CLy/zoLy e'(CLx+cLy)/2°L(x=y)
w,(C z = =
1'Lx*"Ly 2m6, .o 2
oLy 2m0| (y=y) isotropic
(3.15)
with OEX,y = CEx,y' Using (3.15) in (3.13) allows us to write
{0
NEHzcoh = '8“02 {(6agx * 6o y) 2)(6 +a } (3.16)
where (cf. pp. 107, 108, [4])
-(xB4y?) /20" a2y
1(2)(a2) = f f 144 or y )g - dxdy f xﬁ — dy,
1+x +y Zwo y
a = 1/26%,
o a2
Ll 27 ety 2% . 2
5>{1-a IO 5y dy} = E»{l + a%e® Ei(-a%)} , (3.17)
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since
o g2’z a 2 a_., 2. . 2% m . -2m 2
/ %—;7—-dz = -9 Ei(-a“); with -e° Ei(-a") = a (-1)" mla =, a™>>1,
0 z m=0
(3.17a)
and -Ei(-x)

Ei(x) is tabulated in [17], [18]. Table 3.2 and Fig. 3-1
)

and ﬁ(o)

LH-coh for a range of rms profile slopes.

(0
below show N H-inc

C. Shadowing Factor, 5°
We shall Timit ourselves here to the incoherent backscatter cases
(R@T) only, for this study. [A summary of pertinent results for 2 and

3 5 (ReT) is given in C, Sec. 7.4, [4], cf. p. 109.] Here S2__ = Q(v = 0),
) Fig. 59 of [12], where ¢(= m/2 - 8 ) is the grazing angle, as before.
o The pertinent parameter here is

a =(cot 8oTVOL (xay) (% @ of Fig. 59, (12]), -
3.18
=(tan¢V0L(X=y)

By calculating a (= @) and using Fig. 59, [12] we at once obtain good
estimates of Sﬁack (= ﬁ). For the large rms underice profile siopes en-

countered here we see that<c§acé>can be noticeably reduced from unity

(no effective shadowing), vide Table 3.2 (and Fig. 3.1), again unlike
2

the ocean wave surface environments commonly encountered, where 9 x=y)

is comparatively small, C, Sec. 7.4 of [4], where Sgack ~ 1.

Table 3.2 Backscatter, By7—= 30°; LmoT = m/2)

. . v 1 T ' ]
' rms slope H H : ! i 1 :
’ y b2 (0) Rl : (0) - ;T‘1~ i
angles, %> o | of g M-ine/18 i Mpcon 181 A0 Niplinc/161]  2gge  Bhack®@ (90)
: ; : : oY o ; :
R R T (-30.4) 9.09-107%14.20+ 1077} (-30.4) 9.09-107*|] = {100} 0.0
e do 0ua7e i3m1e107%)i(-27.a) 18210730 (0.38) i o107?) 100 L 0.9 -0.22
' 20 i o.364 1321071 [{(-23.2) 477103 o0.826 | (-13.7) 4.27-107%(ls.84- 10"} 0.80} -1.0- |
i 30 0577 13.33. 107 {(-19.7) 1.06 <102 137 f (-8.2) 1.50-107'|3.06-107% 063! -2.0 |
|40 il 0.839 7.04- 107 j(-16.7) 215207 195 1 (-a.3) 3.72-107 12,10 1078 0,49 -3 |
50 3 1.19 ¢ 1.2 [i(-13.7) 4.26-10%)  2.35 | (-0.7) 8.52-10"'!}1.48-107% 0.37} 4.3 :
eg. (3.14) B9 (3.19) Qe (B.ge) €. (4.7). 1769, (3.18) Fig. 89, (12
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For the backscatter condition taken'here (60T = 80°; ¢0T =1/2),
Eqs. (3.12b), (3.16) reduce, cf. (A.2-13), to

< NES)' 4 2. 2
=-1nc
= = cos 6 . {oftan“6 . + 1}
6 |pack oT ‘°L oT
b _=T/2 )
8,,7=80°; oT "% - g.09-107% {(32.16)cf + 1}, (3.19a)

(+ $=10°) \ §(0)
LH-coh|

16 back
¢0T=n/2

(2),.2y_..2 2
-SCOSGOT{GI (a%)sin 8,7tcos eoT}

-1.39 {5.821¢%)43.02 + 1072}, (3.19b)

Figure 3.1 shows how K OE’ N(Oz. , etc. vary with the rms slope angie.
Typical values of <¢2>% are O(30°) for ice bottom profiles, [16]. As
expected, increasing <¢ZZE leads to increasing tilt-factors and smaller
shadowing coefficients (52), because on the average, the effective angle
of incidence is thus increased over eoT as a result of the larger (bottom)
slopes. Also, for the same reason, the fraction of the scattering sur-
face cast in_shadow is increased, i.e., % is decreased. However, com-
parison of 52 (db) and N0}, (db) from Table 3.2 shows that the tilt-
factor increases (with o or ¢2 %) considerably more rapidly than the
shadowing factor decreases, so that the net effect is a significant (rela-
tive) gain in scattering strength due to the increasing rms slopes of the
bottom ice surface, as this may occur. Note, for the ocean wave example
discussed in Sec. 3.1 of [4], that the rms slope angle is 13.1° (corres-
ponding to a mean wind speed V;f_gg_knots), cf. Eq. 3.2e-[4], for which

o = 0.233, from (3.14), with Sgack = -0.4 db, as shown on Fig. 3.1 here.
In this case the associated tilt-factors are comparatively small.

3.3 Model Ia: A Numerical Example--Incoherent Backscatter at
eoT = 80°, fo = 1 kHz

With the results of Sec. 3.2 in hand, let us apply them to Eq. (3.8)
to obtain the (theoretical) backscatter cross section for a critical

geometry, which tests the adequacy of our physical model. Such a test
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occurs at "high frequencies" and small grazing angles, where the geo-
metrical acoustics (i.e., "facet") component of (3.8) is negligible vis-

l a-vis the Bragg term, [4]. Accordingly, we choose eoT = 80° (¢ = 10°)
with OoT = n/2, cf. Fig. A.2-la, and signal frequency f0 = 1 kHz. Thus
we have the following calculations:

‘ 3 = o, - . 2 1/2 = o _ °
1 A. Calculations (eOT = 80" fo = 1 kHz; <¢L> 0 50°7)
- _ _ 3 3 _ -1
(1.) ko = Zﬂ/ko = ZWfO/co = 27 10°/1.5+10° = 4.188 {rad m *)
I fokg = 3,08 -102 (rad m°1)4 (3.20a)
(2.) 8,7 = 80°: < cose,q = 0.174; cos®e 7 = 9.09-107%; sing = 0.985
2 4

taneOT = 5.67 ; tan eoT = 3.21-+10 ; sin eoT = (0.941

- 2k sing - = 8.25
o = ol (3.20b)

1
2

(3.) From (3.10) and Table 3.2 we get B- §° for <0>% = 0, 10°, ..., 50°.

[

i (3.20¢)
' (4.) Wy(0,2k; sing ), (2.11b):
4nCy 1
‘ W, = . k. =0.05m"% C,=0.013
H 2 . 242 ° c ? 1

] [+ (2K sin8 1) ]

2T 8 m0.003) | A ge.072). (3.20d)

2Psin? 0 ﬁﬁ@ug o ‘- : :
0s1n eoT

(0)

B. The Backscatter Cross seCt1°"’6—back

Combining the numerical results of A above with those in Table 3.2
and applying these, in turn, to Eq. (3.8) for the backscatter cross sec-
tion, specifically at small grazing angles (eoT = 80°), gives us the re-

sults shown in Table 3.3 following:
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Table 3.3 Model la--Backscatter Cross Section, 6(0):

As expected, the frequency-independent "facet" component, &:
(3.8), is quite negligible vis-a-vis the Bragg component, 8

3(0)
inc®

until the rms slopes become large <¢2.>2 < 45° (e.g.,

specifically.

ponent actually dominates as shown in Fig. 4 1.

For example, at 02

ine—
[6,7 = 80°;5 (&,p = ™/2); f =1 kHz]
<D,

L 2 5(0) + 8l0) _ 5(0)
rms slope L{x=y) 1nc -L inc-H inc

o | o 0 (<= dB) | 9.99 *107/ (-60.0 dB)

10 31101072 | 1.27-107% (049 dB) | 1.93 - 100 (-57.2 aB)

20 132107 | 2.75+10750 (-506 dB) | 4.19 +10° (-53.8 dB)
30 133301070 | 8.76 1070 (-191 dB) | 7.37 100 (-51.4 dB)
| 40 ‘7 04-1070 | 3.81-10% (-84.2 dB) | 1.16 * 10 (-49.4 dB)
50 R l 1.38 © 107 (-38.6 dB) | 173107 (47.6 dB) |

Eq. (3.14) Eq. (3.8) Eq. (3.8) (no Kirchoff correction)

(0)
, of
inc-L (0)
2 inc-H’
L £ 1), at 1 kHz

1 42 <¢3>2 = 50°) the facet com-
Also, because of the

general form of the wave number spectrum (2.11b), the Bragg component

(0)
a1'nc H

(provided the effective signal frequency f
(3.20d)).
G?T >70°) this means fo O(> 100 Hz).
for Model Ia is shown in Figure 4.1 ff.
#*3%%— include a +2.5 dB Kirchoff correction, taken for 6

= (0.05)2, cf.
grazing angles (

. 0
cross section 6ihc

from Fig. 13 of [19].

13.1° [= of = 5.42

1072,

Then, W

is essentially independent of frequency, cf.
is such that (2kosine

gt Ak 4 /s1n46

oT

(3.20d) in (3.8)
2
oT) >>kc
Here, at the smalier
The backscatter
The curves

- [~]
oT ~ 80

This is appropriate for rms (wave) slopes of

for mean wind speeds of v

20 knots (= 10 m/sec)],

but is probably too large for the larger ice slopes here, since the larger
"tilt-factors" reduce the penumbra effects of near-grazing incidence.

Thus,

C.

the corrected curve for 8(0)

Remarks and Conclusions

inc-back

is a conservative upper limit.

OQur results are not sensitive to the "splitting" frequency fD (or

wave number, kp = zﬂ/xD), cf. [13].

However, it is reasonable to choose

this frequency less than the signal frequency (fo), in any case such that
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(0)

a8 Jinc

-20F

-25h

-3 I

or Expt.:3(0) A=+15 dB

oh=15.0cm
2h=5.0c

\

Exp + 15dB

e
(Kirchoff (0)2

corr‘ection)+6L

&oh=8.0cm /]
2. =4 . Ocm without correction
X e 1 Exp - 15dB SO
R.0p=6.0cm '.—'
2,=3.0cm / 8(0)2
inc-H ﬁ? L
-55
.",
|
-651 3 1 1 L 3 J
0 10° 20° 30° 40° 50° 60°
<4)E>;5 = tan'loL
Figure 4.1 Backscatter Cross Sections at 657 =80°; f5 = 1 kHz: Model ]bi
xweewe, Eq. (4.5), Model la: s, Eq. (3.8):8{0) = 2!0].
» Eq. (3.8).)

(A11 have Kirchoff correction of +2.5 dB, except
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the Rayleigh number, RH (= 0§b§kg), for the resulting "high-frequency"

Bragg component is small compared to unity, so that the associated per-
turbational expansion of the Kirchoff model (in the manner of [4]) is
valid for obtaining this Bragg contribution. [See the remarks at the
beginning of Sec. 3.1.] |

The wave number spectrum used for splitting here is given by (2.11b).

We calculate ol the mean intensity of the Bragg component, from

H’
i 2m 4r(C
o = [ W (KdK/(2n)? = [ db ——iy IK
kD 0 (kc+k V& (2m)
2 21-1. 2 _ 2 _ 2. - -1
= o, (1+ (kp/k) 174 o = Cq/k; = 5.68 m"; k_ = 0.05 rad T .)
3.21

Table 3.4 shows RH = (OHboko)2 for various "splitting" wave numbers, kD,
at a signal frequency of 1 kHz and 10° grazing angle, in the backscatter
regime, for the Lyon data of Sec. 2.

Table 3.4 Model la: R, @ f =1 kHz, 8 - = 80° (¢  =1/2)

oT oF
N 1 7 -

fy (H2) | Ay (m) | ky = radm ofs (3.20m% R (K b,)?=2.116m™2
30 50 0.126 0.772 R, = 1.63
{ 50 30 0.209 0.307 0.650
| 100 15 0.419 7.97 +1072 0.619
200 7.5 0.838 2.02 . 1072 4.27 . 1072
| 400 3.75 1.68 5.03 .1073 1.06 . 1072
1 kHz 1.5 4.19 g.07.10% i 1.71.1073

2 KHz 0.75 8.38 2.02 +107 4.27 +107%

For the above geometry (and data) choosing fD 2 0(100 Hz) yields a satis-
factorily small Rayleigh number (fD <fozg)f0r the Bragg component. In
inc® both the "facet" and Bragg
components are independent of kD b ko).

the present situation, i.e. (3.8) for 8
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Conclusion: It is quite apparent from Fig 4.1 and Table 3.1 that
the simple, single-surface model (Model la), however arti-
ficially split to gi e "facet" and Bragg-scatter contribu-
tions, yields too <mall (incoherent) backscatter cross

sections, Gggz,
(and intermediate and "high" fre juencies, f, >0(100 Hz)J.

a . these comparatively small grazing angles

Even 21lowing for the large experimental spreads (p = O(15 db))
in the data (Fig. 4 of [5], and Milne [20], Mellen and Marsh
[21]), shown as the dotted line in Fig. 4.1 here for 3,7 = 80°,
fo = 1 kHz, Model la is inadequate to account for the ob-
servations.

Accordingly, we must investigate the more complex,
two-component surface Model Ib, described in Sec. 2.2 above,
to see whether it can reasonably account for the larger ob-
scured backscatter intensities.

Finally, we note that major numerical differences with the analogous ocean
wave surface models stem not from the analytical results, cf. (3.8), but
from the much larger rms slopes encountered in the ice profiles, as well
as from the empirical details of the profile data themselves (cf. Secs.

1, 2).

4. Scattering Cross Sections for Model Ib

As we have seen in Section 3, a single-component, or single-surface
model appears to be inadequate to explain the observed (back)scatter
cross sections, cf. Fig. 4.1. This strongly suggests that an additional,
but independent, small-scale surface structure, riding on the original,
larger-scale underice surface may provide the required scattering mech-
anism, which accounts for the empirical scatter cross sections, particu-
larly at the smaller grazing angles (eoT >70°).

4.1 Scattering Cross Sections; Backscatter Cases, Model Ib

Thus, we modify Model Ia, (3.5), according to

) = Bpep +fuon | = 3,05 + gy) * Bygyy (= Model la +-ﬁACh>’ (4.1)

30




TD 7375

where the additional, small-scale-surface component is %, = Sy{r), which
is now regarded as normally distributed, <Ch> = 0, vide Sec. 4.3 ff.
The unit normal ﬁ_, cf. (2.15), reduces to

72)/‘,.1 + ci + ci} > & 3/, (4.2)
L

ﬁA : ﬁL = {(ixgx +j:ycy - L
the contribution of the "high-wave number" comporent, Sy beine ignor-
able vis-a-vis that of o» in gy [Tn fact, we vecognize (4.1), with
oy * n s as being formally analogous to our previous ocean wave surface
model (2.1)-[4], which includes a soliton or haudraulic jump component
riding on the underlying gravity-capillary wind-wave surface. Here,
however, ;h may be "two-sided," i.e., <Ch> = 0, unlike the soliton model
used in the wind-wave surface study [4], cf. (4.11), (4.12) ff.]

Our analysis here consists of a slightly modified version of the
treatment described in [4]. The incoherent scattering cross section
may be compactly given by

r

3(0) _ ;3(0) 3(0) (0)
inc \3inc—L * 3inc-H} * 61'nc-h ’ (4.3)

i

where the first two terms of (4.3) are respectively provided by (3.6)
above, in the general bistatic cases, specifically under the Kirchoff
conditions described at the beginning of Section 3, which for these
classes of profile data are applicable for illuminating frequencies
fo = 02 503?83, viz., the "intermediate" and high frequencies. Spe-

cifically, “inc-n 1S given by
4

— = k
8(0) = Rg 52 0 N(O)

inc-h 167r2 Lh (agb‘x,y)inc W

n(22 [y ) s (4.4)
cf. (2.13)-[4], where wh is the wave number intensity spectrum of the
additional, independent surface component, Ch‘

For backscatter we use (3.8) for the first two terms of (4.3) and

write (4.4), ¢0T = m/2, as
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To obtain an estimate of the wave number, kS’ at which a new spectrum is
required, we solve (A.1-13) or (A.1-13a) for kS, getting (A.1-14), K. >>1.
The results are tabulated in Table A.1-1:

Sc

Table A.1-1 Spectrum Transition Wave Number

- . - -1
kes € = 0.013; k. = 0.05 (m™})
<Dk, 2 _panXe -1 A (=
I<4> > 2. rms slope OL(x=y) tan~<¢> kS (m ™) S( Zw/ks) (m)
1 0° 0 0
‘ 10 31101072 :0.47 £ 13.3
20 . 1.32 1071 2.18 - 10° 2.88 +1073
| c1n-1 10 -10710
30 333010 1.10-108°% 57110
40 . 7.06 *107} |
50 ; 1.42 ’
P | i 1

Clearly, the transition wave number kS is much too large for the rms

slopes encountered in practice with ice profiles, e.g., 0(30°). so that
ks = 0(10%0) or 2 = 0(10710 m).
in the text (esp. Secs. 3, 4) that a true two-component or two-scaled pro-

This supports the argument, developed

file surface should be considered, since a single-scaled profile, however
artificially split, yields much too small backscatter cross sections (for,
in the text, grazing régimes). As we note above, such a profile requires
much too short a cut-off wavelength, ag, to provide the magnitude of rms

slopes typically encountered, vide Table A.1-1 above.

A.1-4 Covariance Functions and Wave-Number Spectra (Model Ib)

For our surface elevation model (4.10), when each projection element
is independent, so that a poisson model of element location may be ap-
plied, [20]-[22], we readily find that the covariance of the profile is
given by

h(-/-r) = I ( ) <C( l-r"g)C(E1+vA~'~r __‘:1’ )>e Q!_"’ (Al'lS)

-~
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where SC is the amplitude wave-number spectrum of c(g). Thus, we write

2 o ik, er +ik,r, dk,dk
1 - 217R1TIS2 T =R %R
(ax) Lx=y) [f_mf kx1kx2 SC(EI)SC(KZ)*E (2r)2
I éI‘:O
(A.1-19)
and since
= 2 - i = - -
sc(gl)sc(xzj* (2m) 6(32 gl)wz(kl)c, with Ar = rp-r,, (A.1-11)
. . . . 2 _ ,2..2
which defines the wave number spectrum intensity wz, we use k- = kx+ky

= 2k§=y and (A.1-11) directly to obtain the result (A.1-9). Equivalently,

for these isotropic cases

Now, using (A.1-7) in (A.1-9) and truncating the spectrum W, at some
(large) spectrum transition wavenumber kS’ to get a finite rms slope, we

have here j
ke .3 c K 3

2 S Kk dk 1 2 1 = S »

ac, =0 [ =S5 Tog(Ke +1) + -1, KB o=, /
Lix=y) = "1 7, (k§+k2)2 2 Sc 1 sc kg ?
(A.1-13) >

c .

= _l - >> - %

5 (2 Tog KSC 1), KSc 1, (A.1-13a) g

with i:
- - 1 - ]
ke = k_exp {3 [1+ 2of(x=y)/c11} . (A.1-14) 1

)

R
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from Watson [10], p. 410, (2), with
W, (K) = 2./ (k2+k2)2 | cf. (4) of [5] (A.1-7a)
2\*'Mellen 1" '¢c ’ ’ bee )

Similarly, using (A.1-7) in (A.1-5a) gives the correct covariance,

viz.:
] 4nC -
25 - 1 1 ikAr cos ¢
TPriar) PRy [ ] el dk,dk,,
c
_ 1 fZW 4 fm kdke | KAT €OS® 4ty
(2m)2 "o 0 (kZ+k?)?
o J (kbr)kdk  /C . »
= 2C ———— = = [k.ArK,(k Ar), (A.1-8)

as required, cf. Watson [10], p. 434, (2).

A.1-3 RMS Slopes (Model la)
The calculation of rms slopes oL(x=y) of the ice profile can

readily be carried out once the spectrum (or the correlation function)
is known. From (A.1-4), or (A.1-8), it is at once evident that with

this spectrum model UE( becomes infinite, so that for suitably small

wave numbers the emp1r1§a¥)spectrum clearly is inadeguate, i.e., does
not fall off fast enough as k ~=. Thus, we may use the empirical spec-
trum (A.1-7) up to some effective cut-off frequency ks, at which point
another spectral law takes over. Just what the new spectrum (at k> kS)
is remains to be determined by experiment [cf. our remarks a propos of
Model 1b, Sec. 4].

For the (isotropic) slopes we have, in general,

00

>
OE(X=Y) ; (aﬁx=y )‘ = %Ff

kdk—kzwz(E) , (A.1-9)
ar=0

0
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1im
*»0

2 2

and since xKl(x) = 1, we have at once (cf. Watson, [10], p. 185):

= 0.013/(0.05)% = 5.20 (mz);--o;z.zs[zz.:ss-«ac, (2.6)]
(A.1-4)

| -
. pC(Ar) kCArKl(kcAr),

———

which is Eq. (2.10b).

A.1-2 (Isotropic) Two-Dimensional Cases (Model Ia)
For the associated spectra and correlation function in the two-

dimensional cases we have, generally,

(2-dimensions): K_(Ar) = ng (ar) = [ | Nz(k)e'i-'s‘ér zjuig», (A.1-5a)
T

with o .
uy(k) = f [ K (er)e'™® S agar). (A.1-5b)

Similar to (A.1-2) there is the relation

2"W2(k) (k). (A.1-6)

Mellen,[5] = Wotk

Let us use (A.1-3) and the postulated isotropic character of the
wave number spectrum to determine the two-dimensional form of wz(g) here,
viz. (2.11b). From (A.1-5b) we have

2 © -
Wy(k) =[ ¢o [ ar d(ar)o’(k ar)K, (k ar)elbrk cose
0 0 z' ¢ c

ZNGCZ fo ardy(kar)Ky (kar) (k ar)d(ar)

2,02y 1 2 _
(2ncc/kc) IO Jo(kx)Kl(x)x dx, b = k/kc,

Wy(k) = ke W 0<o<2; k=2, Eq. (2.11b), (A.1-7)
2 ~ 2 2 2 ’ = = ? x y b Q' . £} .
(k2c?)
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Appendix A.1. Wave Number Spectra and Spatial
Correlation Functions. Models Ia, Ib

A.1-1 One-Dimensional Correlation Functions
and Spectra (Model Ia)

For the wave number spectrum and associated spatial correlation
function we employ the following Fourier transform relations:

-]

-ikdr dk

(1-dimension): K (lar) = 0%, (lax]) = [ (e T gh ar = jarl
(A.1-1a)
with - .
Wy (k) = f_m&(ér)e‘m‘”d(m), (A.1-1b)
where o
o= k. (0) = [ W) gk (A.1-1c) |

for the mean intensity of the profile elevation, Z. In reference [5]
the wave number intensity spectrum is defined as

2Trwl(k)Meﬂen,[S] = Wy (k) (A.1-2)

here.
It is instructive to obtain KC(Ar) from the empirical fit of Mellen
et al. [5], (2.9) viz.
iy (k) = we (k2 + k%)Y (A.1-3)

Thus, using (A.1-3) in (A.1-1la) gives*

o nc . © C
2 1 dk -ikar cos kar 1
oo _(Ar) =f —_—— e = Cf —5———=575dk = —5{(k Ar)K,(k Ar),
(A.1-3a)

*In equation (2) of [5] "constant” should be replaced by "(1/2)
constant." This also insures that (4) of [5] agrees with (2.11b), etc.

4
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(i). To include specific keel structures in the manner of Models
Ila,b (Sec. 2.2);
(ii). To compare the results of (i) with those of the present
study;
(iii). To evaluate forward, as well as backscatter, including co-
herent scatter components.
Critically needed now are active experimental data, both linear and di-
rectional, at wavelengths O(6 m - 1 cm) on underice profiles for typical
regions in the ocean. With such data we can evaluate and compare the
various scattering models, and select the one appropriate to the profile
régime in question.
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present results depend primarily on the chosen parameter values of the
model in question,and only secondarily on the specific analytic structure.

The conditions under which our quantitative models above have been
constructed and evaluated are, concisely:

Model Conditions

(1). Far-field operations, for both source and receiver vis-a-vis
the underice bottom (Appendix A.2);

(2). Kirchoff-Bragg scatter conditions (Sec. 3), requiring "inter-
mediate” 0(0.10-1.0 kHz), and "high" frequencies O(> 1.0 kHz),
which are in the large Rayleigh number régimes;

(3). Composite gaussian surface profile model (Secs. 2, 2.1), based
on Lyon's data [ 1] (but see Sec. 2.1 for limitations);

(4). An isotropic covariance (and associated wave-number spectra)
for the large-scale profile component, based on Mellen et

al.'s recent work [5];
(5). Finite (rms) slopes--Sec. 3.3 C; gaussian pdf of slopes;
(6). "Single-bounce" geometry for ice, source, and receiver; and
Ve = 0;
(7). "Hard" ice boundary, with local plane wave reflection coef-
ficient (R =1), cf. Sec. 3.2, A.
(8). Large "tilt-factors" and non-negligible shadowing corrections,
Sec. 3.2, 4.2.
(For details, see the text above and Appendixes A.1, A.2). Unlike the
related problems of scattering from the ocean wave surface [ 4], [12],
the surface slopes involved here are much larger, 0(2.5-3), with conse-
quent modification of the analytical and numerical results, cf. Secs.
3.2 B, C; 4.2, Table 3.2 above.
Qur Models la, Ib do not explicitly designate a keel structure,
for the reasons we have already noted in Section 1. Neither are we con-
cerned here with "low"-frequency scatter [fo = O(< 30-50 Hz)], and
multiple surface interactions, produced by suitable geometries in a non-
zero gradient ocean (V¢ # 0). These, and other model situations,are
reserved to subsequent studies. Of these, our immediate next steps are
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is not critical; rather, it is the values of height (~0h) and scale
(~2h) which are significant (except, of course, at the very high wave
numbers, which influence the (rms) siopes).

5. _Concluding Remarks
The principal general results of this study are:
I. Determination of the incoherent (backscattering) cross sec-
tion, Gggg, for Model Ia: a single (isotropic) underice sur-
face (Sec. 2, Sec. 3);

II. Extension of Model Ia to Model Ib, which adds an additional

surface component, of much smaller scale.
The general result II is generated from the observation that

ITI. Model Ia is shown to be inadequate to account for the empi-
rically observed backscatter cross sections (Fig. 4.1),
particularly in the critical regimes of small grazing angles
(90T> 70°) and "high" frequencies f°2=0(0.5 kHz). Further-
more, Model la, if applied for all wave numbers, yields in-
finite (rms) slopes (Sec. 3.3 C).

IV. Model Ib can account for the observed (back)scatter data,
cf. Fig. 4.1. The scale of the added independent surface
component, 7., appears to be: rms elevation o = O(8 - 15 cm);
e'l-corre1ation distance Zc = 0(4-7 cm). (Model Ib always

has finite rms slopes.)

V. These models and results strongly support the need for pro-
file data at wavelengths O(ém - 1 cm), from which appropriate
wave number spectra can be constructed for model use.

Accordingly, a two-, independent~component model of the (underice) pro-
file, involving small- and large~scale surface elements, can account

for the observed (back)scatter cross sections, particularly in the
limiting regimes of "high" frequencies and small grazing angles. Whether
such a model (Model Ib here) is appropriate, i.e., adequately repre-
sents the underice scattering mechanisms involved, remains to be de-
termined, both theoretically and empirically [the latter from V above,
and remarks below: "next steps"]. One limitation here is the restriction
of 24, (4.1), to a single gauss process, albeit with the correct (i.e.,
empirical) second moments, as described in Sec. 2.1 above. Models II
(Secs. 2.2-2.4] are not so constrained. It is emphasized, also, that the
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Figure 4.2 Sketch of K _(Ar), Eqs. (4.12), (4.12a); Lo = "correlation

h~v~
distance," K_ = e

h She

Remarks

Figure 4.1 shows the incoherent backscatter cross section 8(0)

attributable to the small-scale component riding on the 1arge-sc;?2 "
profile, Zg» for a selection of parameter values (oh,lh). We have
chosen values which give cross sections in the range of empirical values
when the rms slope is 0(30°). Typical values are gy = 0(10 cm) and

Lh = 0(4-5 cm), or lc = (5+ - 7 cm), for our present model. Here
8§22_back 2 oggg_h for slopes 0(20°- 45°): the independent, "small-
scale" component riding on the large-scale profile is here clearly the
dominant contributor to the incoherent backscatter cross section, for
these (comparatively) small grazing angles and high frequencies,

O(fO = 1 kHz). The rms roughness of Cp» @s measured by o, is 0(2-5%)
of that of the (composite) large-scale profile, Sp- [0f course, at this
stage we do not have experimental verifications of the scale of these
numbers, except indirectly through the postulate of Model Ib and the
comparisons shown in Fig. 4.1.]

Finally, if we use the generalized version, (A.1-22), of the wave-
number spectrum noted above (4.14), we obtain for the same parameters
(and 82 = /2 Qh) essentially the same values of aggz_h, more precisely,
values only 0(2.5-3.0 db) lower than those shown in Fig. 4.1. This is
in keeping with our remark above (beginning of Sec. 4.3) that the "shape"

of the individual projections forming the small-scale surface component
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4.4 Model Ib. A Numerical Example:
Backscatter @ 90T=80°, ¢0T=w/2; fc=1 kHz

__ Combining (4.7) for 'O/ cf. Table 3.2, (4.14) for W, (0,2k_sin8 ;)
Rg, (3.10) and S, Table 3.2, in (4.5) gives us the desired quantitative

structure for the backscatter cross section 8€O)

inc-h’ arising from the
added surface mechanisms, Che Table 4.1 shows a range of values of 6(0)

inc-h’
for various choices of model parameters

Table 4.1 Model Ib--Backscatter Cross Section

(0) .
éinc-h’ Eq. (4.5): (Uncorrected*)

(6,7 = 80°5 f, = 1 kHz; (0.7 = 1/2)]

o &% ?zmh - 3.0¢n} ' '01,‘ *4.0cm! E Bzh <5.0cm ]
~rms slope o, +3.0cmi 6.0 % 9.0 [0, ~a0cmi 8.0 12.0 Yo, =5.0cm! 10.0 | 15.0

0 | -e.6 ()} -e26} -sea| 637 | -57.71 -se.2| -60.0 | -sa.0i -50.5 |
10 | -ssa i -spal -es9|  -sas ! -a7.5i -sn|  -e0.8 -43.8} -40.3 |
2 \-&A i -8l -m3] -7 ~4L3{ -38.4] M2 -38.2 ami{
b3 | -4 | 424 -9 -3 -37.5} -M.0| -8 338} ~3.3
[ ~45.6 i o-wmsl -l w07 -7} -a2| -0} -mal -mS |
P50 | -6z P -2} ~33r  -3.3 =331 -28.8[ -6} -mmel -msl |
«ye add a nominal +2.5 db to each entry, to provide the needed correction tor the Kirchoft approximation

at ¢ 7 * 80° (e=10°), from Fig. 13 of [19]; cf. Fig. 4.1.

The shaded regions of the Table indicate cross-sectional values that
fall within the A-region (£15 db) of uncertainty in the empirical data
shown in Fig. 4.1. Also in Fig. 4.1 are four curves, representative
of possible model values (Model Ib). (The A-region is -17 to -47 db.)
Figure 4.2 shows Kh(ér) and typical parameter relations: in our
present model Lo’ and therefore lh’ lc are fixed; (for a model in which
Ly (= 2%,) is random, see Appendix A.1-4). Here 2. (= /?lh) is the
correlation distance of the profile component (ch).
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f cf. Appendix A.1-4, with
EI 2 _ _ '7? - . 2 _ 2 2
- op = Kh(O) =Yy %o w/8 %y L0/2 3 Ar (ax)© + (ay)©, (4.12a)
where the mean value is explicitly
<> =y 'Z' L2n/4 (4.12b)
K 0 °0 0 : .

(Note that if E;'= 0: the mean "bump" height is zero, then there is no
"dc"-component in the wave number spectrum, cf. (4.15) ff.) Equation
(4.12) is shown in Fig. 4.2. (However, for an alternative model, extend-
ing (4.12), see Cases i,II in Appendix A.1-4, and closing remarks in this
Section.)

The two-dimensional wave number spectrum corresponding to (4.12) is
obtained from

Wy (k) = fmf Kh(é_r)e'--ér d(ar), (4.13)

cf. (A.1-5b). We have, for k = (O,Zkosineor) specifically here

2
-2(k 2,5in8 )
2£2e h oT

wh(g) ='2woh h

(4.14)

for the "continuum” part of the spectrum. If EO> 0, then the complete
wave number spectrum is
. 2
3 -2(k. 2,.sin8 ;)
—_ 4 h
h(k) = v2 T2 T Lls(k-0) + 2nofele o, (4.15)

o ik _Ax
where §(k-0) = G(kx-o)é(ky-o) and [ Ae X d(ax) = 2nA6(kx-0), etc.

(Note, incidentally, that p has finite rms slopes, unlike Zg above;
(Appendix A.1). The "dc"-component in (4.15) does not, of course, in-
fluence the scattered radiation.
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given by the results of Table 3.2 and Fig. 3.1, cf. Sec. 3.2, C. The
dominant effect, however, here is that produced by the "tilt," embodied

. (0)
in NLh-inc’ cf. (4.9).

b - 4.3 Model of the Small-Scale, Additive Surface Component, CH
oS A variety of plausible models for the small-scale component Ch is
certainly available at this stage of our study. One such model, which

:I%T we employ here, is that involving random "bumps" or projections, dis-
2 tributed in space independently, riding on the large-scale surface, CS,
cf. (4.1). These projections are accordingly poisson distributed, and
may overlap, or ride upon each other occasionally. Physically, these
"bumps" represent inhomogeneities in the local crystal formations on
.- - the large-scale surface, produced by near-surface freezing forces.

A reasonable model of a typical (thJ projection is given by the
gaussian form

-4y /L2

Chlrar;) = coe , (4.10)

chj
where‘:j is a (random) location (referred to the reference plane, So,
cf. Figs. A.2~1, A.2-2). [What is primarily important in such models

is the height (~Co) and spread (~Lo); the actual spatial shape only
becomes critical out on the "tails" lr r |>> L ), or equivalently, for
the high wave-number fall off of the assoc1ated spectrum. ] Accordingly,
for the isotropic poisson process %h (4.10), we may write (cf. Appendix
A.1-4) for the mean and covariance, respectively, generally

Cp> = Y <E (e 5 K (8r) = ANy )c (r +Ar')> , (4.11)
where Y is the process density (in space) = average number of "bumps"

per unit area (on ¢,) cf. [20], [21].
For our specific isotropic model (4.10), (4.11) reduces to

22 2 n
Y TLTE ZAr /L «Arc/2f
- 0 -0
Kn(lr) = --3;-Jl— e = ole ", (4.12)

34

.............. ..’. ‘_4'_' -. R I L LI R
LA .. e . .« "o " REIACRER S e L L T AU
AN A, T N T P VR A A Y P M N Y N T P T O L R T A L U T N -

v
'L‘L‘L-A..A‘XA‘LAAL'\A‘A_A_L‘.A_LLLLA'LJ&‘LLLLL\:LA—HLQ— s_u;\_!\.ll. L “- P PV R PR T

L LR Ml a4 - RN SR - B A g aiee e R Syl s aah At T R N s R rrm— et L I e ) L= SN - Y oo .




~ W LSWYW W JwgwTTw Tw, w

i ‘P
LA
e
s e e
: o
e ot s

- -

TD 7375

*

I

!

N
DA N
L) PRI e
S o#
. P ¢ .
PR et

e hngl e ne Sm et e ne de o
[ et}

Négzinc = 16 {1(4)s1n oT + 61(2)s1n26 Tcos2 oT ¥ I(O)cosaeoT},
. back |6 =T/2
. oT
~ (4.7)
" where
2,2\ ,,2
w  =(x“ty )/20(x_
=y) 2
10@y=1 fe s d;dy = -a%% Ei(-a%); a° = 1/20%x=y);
-® 1+x " +y 2moT
(x=y) (4.8a)
) o -(x%+y?)/20
12y = f g (< or y )g > dedy Lu- 10 a1, cf. (3.17),
1+ x5 +y 2mo
X (4.8b)
(4) ( 4 i )/oc X dxdy _ 3¢ 1 (2)
I a) = x or y )e xdy . 3¢1 _ o (a)
(a) = f f A z“ci 8 332 i
_3¢1 (0)
= 5'3;7 -1+ 17 (),
(4.8¢)

and Ei(x) is the (tabulated) exponential integral, [17], [18]. (Note
that with vanishing slopes, a~+=, I(O)-*l, and 1(2), 1(4)-+0.) The re-
sult (4.7) is, in the general bistatic cases (with ¢0T = m/2):

(0)
N .
0

cf. (7.33e)-[4], and (A.2-11), (A.2-13, 14) for %x® Coys %z ete-
Values of Nfg)1nc/16 for the backscatter cases are tabulated in Table
3.2 and shown in Fig. 3.1. This tilt-factor is seen to be much larger

(0) O JCRR ] n =
than NLH 1nc/16’ for the artificially "factored" surface ) CL + CH,

cf. Sec. 3.1 et seq., as the profile slopes increase.
The other factors which scale ngz remain unchanged in basic struc-

2 =
0

ture: = 0 db, cf. (3.10), and the shadowing factor, EE, is still
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| 7
- k
(0) -2 2 _o_y(0) .
93nc-h! back 0 " lei2 N h (eoTﬁ(inc ) W (0,2 sin6 o). (4.5)
R,>>1 back
bo1="/2

As before, cf. (2.14a)-[4], Nég) is the "tilt-factor" for %,» associated
with the larger-scale surface component “ and is given generally by

4
(0) - (o ox ¥ Sy°y ~ oz)
NLh inc 16 - CZ N Cz s (4.6a)
X y L

so that for backscatter (with %7 = m/2)>

4
4
bo (—X
“linc légsm O <1+52+C2> + 6sin’ % cos <1ch 2,
x °y L vy "L

+ cos? 81 <;+C +C:> % (4.6b)

(for symmetrically distributed slopes, about <Z X,y L = 0), where (3.15)
governs the distribution of CLx’ cLy here. As for the Bragg component

[3$n2 y in (4.3 }], the pertinent surface statistics for the new com-

ponent, 6522 h (4.5), are the wave-number intensity spectrum: there is

no requirement that ch in (4.1) be normal, for example.
Finally, the complete expression for oggg is provided by (3.6)
and (4.4), generally, and (3.8) and (4.5) for the backscatter cases

treated quantitatively here.

. (0)
4.2 The Tilt-Factor Nlp’. o

Again [cf.Ji, Sec. 3.2], because of the large rms slopes involved,
we must use the exact relations (7.64)-[4], (7.65) -[4] to evaluate
(4.6b), with the help of (3.15), (3.17). For the assumed isotropic
surfaces here (oLx = oLy) (4.6b) becomes
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where 8 = (CO, ...), i.e., all statistical parameters of T, and is the
domain (i.e., surface) over which the individual projections can occur
(in our model, individual "bumps" or projections can overlap). On the
assumption of a uniform density of "bumps," (4.10),on A, we can rewrite
(A.1-15) as ' ‘

Kp(ar) = v [ <z(A,8)c(A+br,0)x d (A.1-16a)
— 0 A v T ~ o '9 ~——
— = //-4(A§+A2)/L§-4(K§+2AXAX+A§+2XyAy+Ax2+Ay2)/L§:>
= YGo [ [ A 01 e y
070 ° _ Xy L
0
(A.1-16b)
for these isotropic cases. Evaluating (A.1-16b) is straightforward. We
get here
- 2 anep? — ton -2ar?
K, (or) = v 222 e > - (v,22 -3 )e : (A.1-17)
)
where in our present model we now assume that wl(Lo) = G(LO-LO), so that
(4.12) is the result.
However, it is instructive to consider some other pdf's of Lo:
Case I: wl(Lo) = Rayleigh pdf
Here Lo’ or lh, is assumed to be governed by a Rayleigh pdf, viz.:
L2722 -22/202
o'~ L h' e~ 2
(L) = = (2) = 2
wi(l)=-"—5—, L 20; orwi(2)= —p—
1'%o o2 0 1*"h o? (A.1-18)
Lo = 21h
Using
-p . -P
© .1 -BxP-vx v/2p
[ xle dx = £(X)7 K, (2 /7). Rel(s.y>0) (A.1-19)
0 s
R

[23], p. 342, No. 3.478-(4), we see that (A.1-17) becomes, with (A.1-18),
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5 2,2 . 2,2
O — o« -2, /20, -Ar" /28
o __2m 03,7 % h 2
it Kp(ar) = vot5 3 fo e d&p /oy
3
& K (ar) = (v cno?) {1 éi)z K,(ar/0,)4 (A.1-20)
h' hiay Y050 12 cH 2 2/ . .
- and since lim lsz (x) = 1, we have directly
- x>0 2" 72 ’
_ - :-2_ 2: 2 . 2:_—2- _2
*‘l K (0) = Y zomog = of |5 (0 = % - %) (A.1-20a)
4
i The associated (two-dimensional) wave-number spectrum from (A.1-5)
is now
W,(k) = 15242 fm x3K (x)d_(ko,x)dx Arjfo, = x (A.1-21)
2\ = 2°h'L 0 2 o' L i L= )

w

(A.1-22)
(= Wy(k)) ; k, = 1/0g

by [10], p. 410, Eq. (2). Unlike the empirical model (A.1-7), this
spectrum supports a finite rms slope. From (A.1-12) we see that speci-

fically
2 4 2
w © 3 k
2 1 3 _% ¢ k>dk 2 4 2,, 2
Gh()(:_y) = 4'IT fo k wz(k)dk - o 0 (k2+k2)3 Oh - (- Oh/4ﬂoz),
2

(A.1-23)

this tast from [23], p. 293, 3.241-(4) directly.

Incidentally, it is not possible to get the covariance (A.1-3,4)
from our gaussian model (4.10), as this would require a pdf of lh of the
form
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=gtle . g oso, (A.1-24)

which is singular, i.e., not bounded or normalizeable.

Case II: wl(Lo) = "one-half" Gauss pdf

In this case Lo’ or lh is now assumed to obey a "half-gauss" pdf,

viz.:

-L2/202 /20
wty) =/2 ;2 e Tt or wylay) //— 5, © gh R CREIN

(A.1-25)
Using (A.1-19) with (A.1-25) in (A.1-17) gives now
2,02 7. 2/502
— ™ -2-/205-ArC /20
- 2T 2,2 h =72 h
(or) = (v 22 B) IO/; 2 e &, /s, (A.1-262)
Sy 2Ty 252 3/2 )
= (Y o 2)/ﬁ? oy (Ar/oz) K3/2 (Ar/ol), (A.1-26b)
Since ([10], p. 80) v
o /T X 1
K3/2(x) =/5% € [1+ X 1, (A.1-27)
we note that
2 3/2 -
11»'3/; Ky/p(x) = 1. (A.1-28)
Consequently, we may rewrite (A.1-26b) as
= 372
- - 2 T 2 Ar
Ky(ar) = (v,e2 T o?) 3/( ) ROVERY (A.1-29a)
: Ar/o
s _ 2 2 /A
- = o kp(r) = oy (af +1) e , (A.1-29b)

where the mean intensity is here

—f ™ 2
0 ?‘01)1

....................................
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:i: as before, cf. (A.1-20a), and the expression, { }, in (A.1-29a) is the
Eu normalized covariance, kh(A ).

} The associated (two-dimensional) wave number spectrum follows from
(A.1-29) in (A.1-5a). Taking advantage of the surface isotropy implied
by Ar - LAE, = Ar here, using (A.1-29a) we obtain*

2 . 3/2 .

(k) = [ " do [ d(ar)arel /2 (g—;) Ky (ar/ag)e'¥ET €036 (2 1.31)
= ZHOﬁOE ,4% fo Jo(kozy)K3/2(y)y5/2dy (A.1-31b)

f( ) Sroie (k) ) (A.1-31c)

W,(k) = = W, (k), (k, = 1/g,), .1-31c

"2 [1+(k%)235/2 2 % 2

|

l _ 2,3,,,2,.,2\5/2

' = 6norhk£/(kl+k ) . (A.1-31d)

again from (2), p. 410 of [10]. This spectrum, unlike that of the empirical
model (A.1-7), also supports finite rms siopes, e.qg., from (A.1-12),

2
2 -1 73 _3(%h x>dx _
°h(x=y)l% gauss  4n IO k wz(k)dk Z(GE)IO (1+X2)572 (=2/3)
= o¥/of (< =), (A.1-32)

1ik?6Case I above. Here W, is ?ék's) as k > while Wy g, 1aigh 1S
O(k ™), and w2-empirica1 is O(k 7). As yet, the various pdf's for Ly
(Cases I,II) are plausible, but not physically justified in any profound
way. One task of a subsequent study will be to attempt a rational choice
of wl(lh), to be tested ultimately against experiment. Basically, it is
the behavior as k +« which appears to be the controlling factor in such
models.

- .- -

*We can, of course, use (A.1-29b) directly, to obtain (A.1-31c,d).
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Appendix A.2. Scattering Cross Sections:
Definitions, Nomenclature, and Conditiqns

There is a number of variations on the concept and definitions of
scattering cross section. It is therefore important to define the
term explicitly, so that the different definitions can be calibrated
with one another [which we shall need to do in order to effect compari-
sons with both the analytic results of others and the corresponding

measurements (cf. [4], Secs. 2.A,b and Sec. 3 ff. for ocean wave-surface
scattering)].

We begin with:

(0)

Incoherent Scattering Cross Sections, 81nc

A.2-1

Here we define

|

i (k=0) . . . e R
)« i o ) iy v
m incident REF
(A.2-1)
where Iincoh’ Iincident are, respectively, the intensities of the scat-

tered and incident fields at the points indicated. The basic concept
of the scattering cross section (for surfaces) is to eliminate the
effects of source level and propagation, i.e., the effects of the
medium--which are handled separately--when computing energy loss, and

to focus on the effects of the random scattering surface itself.

To keep Gggg dimensionless, a reference "illumination" area, Ager.

is employed, whose specific form is suggested by the composite beam
pattern projection on the reference or equilibrium surface <z> * 0: So'
Figure A.2.1 shows the relevant geometry.
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Figure A.2.1 (a) Backscatter Geometry (far-field): Monostatic scat-
tering (R@T), vide Fig. A.2.2; (b) Bistatic Scattering
(R#T): “"forward" or oblique scattering geometry, vide
Fig. A.2.2.

The various factors in Eq. (A.2-1) are given by

k=0 R . . .

(A.2-2a) Igncog (scat. at receiver) = M§9Lx>(0) = intensity of the (in-
coherent) scattered field at the
receiver (R) . [cf. Sec. 7.2 et seq.;

Sec. 8 ff. of [4]];

. 2 _ . , :
(A.2-2b) Iincident(at surface) = Ko(o)in/(4"RoT) intensity of the in-
cident field at OS’ on the equilibrium
scattering surface So;
(A.2-2¢) 97:9g = the aperture "gain" of the trans-

mitting and receiving systems, cf.
(6.3), (6.7) of [4];
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(A.2-2d) AREF = a reference area on the equi-
librium surface So’ cf. Fig. A.2.1,
projected by the composite T and R
beam patterns. (See A.2-3 ff.);

-Zawzc T
(A.2-2e) {"path Toss* =e %09 cT =R+ Rogs cf. Sec. 5.3, £q.(5.18)-
(absorption) (4] Wy (=2nfo ) is the (angular)

frequency of the emitted signal; a is
an absorption coefficient; ¢y = (mean)
wave front speed of sound in the
water medium;

(A.2-2f) RoR = distance of the receiver (origin) from OS’
Fig. A.2.1;

(A.2-2g) R

oT distance of the transmitter (origin) from 0
Fig. A.2.1;

(A.2-2h) t(r,t) = (vector) wave surface elevation, cf.
(3.5).

The definition (A.2-1) for the incoherent scattering cross section,
and those similar to it ([3]-[5], (8], (9], [23]-[25], [29] in Ref. [4]
here, for example) are formally independent of range (RoT’ RoR)' This is
not an inherent property of the definition, however. It is a direct con-
sequence of the far-field assumption, whereby the effective coherent
scattering area is sufficiently small vis-a-vis source and receiver dis-
tances (RoT’»RoR) and dimensions, cf. Sec. 5.5 and Eq. (5.31)-[4]. It
also depends on the correlation distances (lx,zy) of the (components of
the) random wave surface. Thus, 6(0) is implicitly a function of geom-

inc
etry, where care must be taken in its use to ensure that the conditions
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governing the derivation of Isﬁcgg (= M§ ix>(0)), (2.7a)-[4], are obeyed.*

A complete definition of the incoherent scattering cross section
includes the effects of diffraction

@©

50)
Sincoh = %incon * 2 81ncoh ’ (A.2-3)

Skgoh’ > 1, are formally given by (A.2-1), with Isggoh
replaced by the scattering intensities I(k>1) = M(k) (0), cf. Secs.

incoh X-<
7.2C, 8.5 of [4].
Preliminary estimates here of the magnitude of the leading diffrac-
tion component, 8( ) (>> (k>2))’ indicate that it is ordinarily con-
incoh 1ncoh (0)
siderably smaller than the components of the "classical" term, &;
so that in this study we shall, at least initially, neglect the diffrac-

tion contributions.

where the &

A.2-2 Coherent Scattering Cross Sections, 6(0)

coh
X The coherent scattering cross section, oég%, is formally the same
as °§23°h’(A-2'1)’ except that now the incident intensity (A.2-2b)
becomes
Iincident(at the receiver)coh = Ko(o)in/{4"(RoT + ROR)}2 (A.2-4)

which is the "mirror reflection" term. Thus, I

‘ incid-coh -
(1/8)15, idmincon® Sf+ (A.2-2b). In addition, 1{k=0)" is replaced by

the coherent component MEQ;(O), cf. Sec. 7.2B, Eq. (8.7),[4]. Since only
the "classical" or (k=0) component of the scattered field,contains a

*The factors 4v in (A.2.2a,b), and in (2.9), (2.10b( ff., etc.,
arise because of our definition of the green's function, (5.8)-[4], and
source function (5.3a)-[4] in the equations of propagation (here a Helmholtz
medium). Thus, our acoustic field is ay = a/4m, where o is derived from
a green's function source of the form -4n5(R-R')s(t-t'). However,
because of the particular form of the definition of 0(0)
generally, the scaling of the field is immaterial, as is required in

used here and

any useful definition.

...........
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potentially coherent contribution (excluding any direct field which may
be received under certain mutual geometries), the complete coherent
scatter cross section is now specifically

) . 2
. I( (scattering at R) R
(0) -  coh oR . 2.-1

coh ~ Iincid(at the receiver R) AREF {path Toss (ngR) Y7, (R.2-5a)

or
2 2 ,(0)
S(0) - Ror 4™ (Rop * Ror) 3™ Mey>(0) (-2.5b]
h -2.
co (QTQR)Z AREF Ko(o)in * (path loss)

A.2-3 The Reference Area, ADEF

The reference area, AREF’ appearing in the above definitions of the
scattering cross sections, (A.2-1); (A.2-5), while arbitrary, is dependent
on the beam pattern projections on So‘ From Section 6.5 IV, (6.56) of [4],
our choice of reference area is specifically

ARef = A1/2, 4 = 2ﬂ/¢ABi50T§. (A.2-6)
where Al is the projected area {(on So). here specifically of the com-
d>ined gaussian-omni-directional beam patterns used in this study and in
[4]; AB(eoT) are parameters of the projected beam pattern on So’ cf.

6.3; also Secs. 6.4, 6.5 of [4] for details.

A.2-4 General Geometry in Detail:

‘The Received Scattered Wave
For the detailed development of the analysis it is now necessary
to describe the general geometry of the underice surface in relation to
the source and receiver in our current "one-bounce" model. This geometry

of the general (far-field) source-surface-receiver configuration is
shown in Fig. A.2-2, in more detail (cf. Fig. A.2-1).
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Figure A.2-2 Geometry of the transmitter (6 04), underige surface (z), re-

ceiver (at OR), showing surface elevation ¢ above 7 = 0: S
and the common region of illumination (shaded), on S, due
to overlapping beam patterns QT’ QR; (here V¢ = 0).

O!

The associated received scattered wave (exclusive of diffraction
terms) is (from (7.7-[4])

- ) st ds
far-field Ao IBrl Sin(s/Zvn)FS (slc(ggt)...lfo)e 27T

narrow-band

x(0) )

l

(A.2-7)

where the Total Surface Spreading Function (TSSF) is now specifically
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T’ 2
—aw¢ T ~ N 2
| (0), e 0°0° s n-{dop-dop) Q
T/ FoT"0R o z 4
-(s/c ) (r+g)+2a +c T ]
. ) =/ 0007 oy,

(A.2-7a)

cf. (7.7
here in A.2-15 following.
The various elements of (A.2-7) are described below.

Ag = effective "illuminated" surface area, by joint beam pro-
jection in S, cf. Sec. 6.3, Fig. 6.1, r4].
dS0 = = dx'dy' = dxdy on So: £ = 0; with dz = dSo/nz;
''=r M where r' is always on the underice surface
r= ixx + iyy; [(x',y')-system is simply a transiation of the

(x,y)-system]

=(R > 0.+ 0,:

: time-delay from 0 R’

Ror) o T > O

~

~oT’ -oR -oT oR/IRoT’ —oRI' unit vectors;

T’ 1R H R R/IRT R| unit vectors, to projection of scatteri
po1nt on I upon S

Rr. Rps Rgpse- = Ryl IB |, etc., distances;
t' =t - Btyg = doppler-shifted epoch; (r',t') are on the und
ice surface r;
btys = dp-r'(r,t) = dp-(n + glrot-Rp/e)t © Rp # Ryp - d5p
(r,t) | = (vector) elevation of the ice-bottom surface, vs.
5 =0, the plane So; cf. Figs. 2.2.
a = r0/2co = absorption coefficient (sec'z/meter), cf. (5.18)

Also, we have

CLRT = (complex) beam pattern of R,T; Ao
ampl1itude.

injected signal

In addition, we write

56

)-[4], subject to the conditions of Sec. 5.5, [4], summarized

These are:

.2-8)
.2-8a)
H .2-8b)
.2-8c)
.2-8d)
.2-8e)

ng
.2-8f)

.2-8g)

er-
(A.2-8h)

- r; (A2-81)

(A.2-8])
-[4]. (A.2-8k)

(A.2-81)
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_ 2 2\-%. = 9% 3% . -
n, = (L+ g o)) % o0 0y, = 5% 57 ¢ surface slopes  (A.2-9a)
n = normal to surface E, (1,5, * dy8y " 1,00,
~ (inward normal = -iz) (A.2-9b)
XoT* 2R = §T,Rfo/co = beam-steering wave numbers, cf.
(5.13b), (5.7a), [4]; (A.2-9c)
Rr=lg* iz(hT-hR), cf. Fig. A.2-2; vector distance
between 0T and OR' (A.2-9d)

From Fig. A.2-2, it is readily shown that the unit vectors jT’ jR
become for these bistatic configurations

~

Ar S, = By/|Bp| = i, cosey sinep + 1 siner sinep + 1, cose (A.2-10a)
iR So = RR/[BRl = -{iXRT cos¢r sineT + iy(RT sin¢T sineT 'L6)+ ith}/RR .
(A.2-10b)
where ),
- 2 cind 2 _ . : .
RR = (RT sin"6, + Lo 2RTLos1n¢T sine, + hR) , and
(A.2-10c)
*(0)T T *(o)R T /%

[For joT’~joR we simply replace RT by RoT’ b1 > o7 etc. in (A.2-10).] We

l
also find it convenient to write

1 Z20) = 21~ dogr|* Ll * Bio)rRio)r 0% ()75 o)1

+ iy {(1 + R(O)T/R(O)R) sine  ypsing yr - LO/R(O)R}

+ j_z(cose(o)T + €088 1p), (A.2-11)

cf. the exponent in (A.2-7a). [Again, for the reference vectors

RS

- T‘
Jor+ Bope etc., we set R>R o, 67> 1, etc., to get 2o = 1+ - 1.0,
as indicated in (A.2-11).]
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A critically important simplification of our canonical result
(A.2-7) results from the ability to employ "narrow beams" (N.B.), e.g.,

. beams narrow enough so that the mutually "illuminated" surface r (= So)
(i.e., the shaded region in Fig. A.2-2, for example) is sufficiently small
that the spatial geometry (~RT, RR’ etc.) for source and receiver change
little over the "illuminated" surface region (~ So)‘ Thus, we can replace
‘BT by‘BoT, eT by eoT’ etciéyand most important, note that the angle-
dependent quantities in FS , (A.2-7a) can also be replaced by the (con-
stant) reference quantities eoT’ S0t etc. This results in a "factoring" ]
of the beam patterns, in that they now will depend only on their projec- I
tions on the surface about OS’ and not on the codrdinates of the w

surface away from O;. [For details, see Section 6, [4].]

PRI o

s o

PPN R

A.2-5 Parameters of Eq. (3.6): aggz, R_>>1
2 R-2> 2

The various elements of (3.6) are specifically:

( Hﬁ, Eb mean-square, mean, reflection coefficients (=1, for

water/air and water/ice interfaces);

: 52, 5 = mean-square, meany shadowing function, see Sec. 7.4C-
f [4], and
2 2 2 2 3T,
ioLx' g Ly= <G> <CLy>: (CLx =5 etc.): mean-square s]opgé of the
1 "low-frequency" ice surface component, cf. Sec. 7,48-[4], and
(A 2_124 qf = <q$>: mean-square height (about <CH> = 0) of the high-
' frequency ice surface component;
Wy = surface wave number intensity spectrum of ty (cf. (3.5)
and Appendix (A.1)) with
2 .t d
hoclars0) = [ W (kl0) cosliar) &%
™
~D
Aq = Eq. (A.2-6);
kbo = CO0S eoT + COS eoR'
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The directional vector 2z, is given by (A.2-11): g»o, for arbi-
trary angles of illumination and observation.

Important special cases of (A.2-11) are:

(i). Backscatter (R®T): (H)= 03 eoR = eoT; joR = 710T; RoR = ROT;

hR = hT; ¢0R = ¢0T + TT/2;_cf. Fig. 2.2).
w2 = 2(1, cos o p sin 8 p + i, sin o osind .+ 1, cos(eoT);A
(A.2-13a)
2 2 2 i} 5 i
(2 + 20, aoz)/aoz/z 2/cos 8,7 | (A.2-13t)

(11). Bistatic at the Snell Angle (R # T): Lof 0

(ioR)x = (iOT)X when ¢0T =n/2 = (¢OR - n/2);
i 3 : Snell -
] = LloT)y when L= (R ¢ + Rp) sin 8 13 (A.2-14a)

plane
(or), = ~Ugr), When 84p = 857

) = 3 - 3 . - \
%20 le oS 87> OF & = 1, COS 8,5 (A.2-14b)
2 2 2 _

(agx * %y ¥ °‘oz)/°‘oz/2 = 2cos fyr - (A.2-14c)

Otherwise, (A.2.11) is the general relation.
The principal assumptions and approximations pertaining to our
general high-frequency results’ (3.6), (3.7), are:

<(1). Far-field (Fraunhofer) geometries, cf. Sec. 5.5 of [4], with vc=0;
(2). Narrow-band signals (so that we may treat time parametrically
\\ in the moving wave (or ice) surface vis-a-vis the acoustic signal);
! cf. remarks after Eq. (5.21b)-[4];
(A.2-15)<{(3). Narrow beams (cf. Sec. 6.6-[4]; at least one narrow-beam;
'(8). Neglects diffraction terms: k=1: "Diffuse" scatter; k2 2:
multiple scatter (cf. Sec. 3.3; also Sec. 8.5 of [4]);
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Small Rayleigh numbers for the small-scale surface, Ly
e (kobooH)
The surface (cH) is "small-scale," e.g., Ry << 8y the

2<<1;

correlation distance of the low wave-number component is
much larger than that of the high wave-number contribution;
The small-scale surface is statistically independent of
the cH-surface component (vide remarks in Sec. 7.3A, Eq.
(7.19) et seq., [4]); ,

Both components of the wave surface are essentially homo-
geneous and stationary, at least over the "illuminated"
area and for times long compared to the duration of the
incident signal (in the case of platform motion).
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Appendix A.3: Second-Order Probability Den§1;1gs
f the Mixed or Gauss- -Composite K,S Process, Eq. (2.

Our task here is to see if it is possible to generalize the mixed K,S
process, described in Eq. (2.1) by the weighted sum of two first-order
gaussian pdf's, by a suitably weighted second-order pdf, consisting of a
weighted sum of second-order gaussian processes.

We begin with (2.1) et seq., which we rewrite here for the empirical
fit to the Lyon data for the underwater ice elevation g, as the first-

order pdf
o, -(m)%/20f b, -(z-m)?/20%
wl(c) = e + e , (A.3-1)
/Znog JZnOE
for which specifically
b1 = 0.930; b2 = 1-b1 = 0.070; (b1+b2 = 1)
mg = 4.50(m); my = 12.5(m) (A.3-1a)

og = 1.00(m); og * 3.00(m)

The associated characteristic function (c.f.) (2.4), or (A.3-1) is therefore

. 2.2 . 2.2
imeE-acg"/2 im,g-0,£°/2
Flig) =be > 1 4pe &K (A.3-2)
= (1) (1) -
blFIS + bZFlK (A.3-2a)

Accordingly, we obtain

(1)
_ . dFl
C j @& 20 = b.m 1Ms + b2 K= 5.1 (m); (A.3-4a)
- &F 2. 2 2. 2 2
z = - ;jT = bl(ds + ms) + bZ(OK + mK) = 31.3 (m°); (A.3-4b)
g g-_-o
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.tag 5 qz - 52 = varg = bfzg + béai + blbz(mS - mK)2 = (2.38)2 (m2),
(A.3-4¢)
since b1,2 =1 - b2,1’ cf. (A.3-1a).
In our effort to construct a second-order pdf, wz(cl,tl;cz,tz),
which is a valid generalization of the first-order pdf (A.3-1), we must

require that the fb]]owing conditions be obeyed:

I. The first and second moments derived from W (or the associated c.f.,
FZ-c) are the same as those obtained from the first-order Wi
(A.3-1), viz., (A.3-4a,b), with the same variance (A.3-4c), e.qg.,
var Cl = var Cz = var &, for & now postulated to be homogeneous.

(1f this latter condition is removed, then the form of var 2.2 s
to be the same as that of var %.]

II. When Ar = Lo (in the (x,y)-plane of t(r)) becomes infinite, i.e.,
Ar > o, then

1im = F(LR@) 2 g5 _ i
Arse Foop = FiopFiop = FLO36)) Fi(i6,) (A.3-5)

Cl’ C2 are (second-order) independent as Ar + t«, where Flgiglc_i§
given by (A.3-2)!

Condition II then requires that the second-order c.f. FZ-C have the
form

(A.3-6)

r
! - w2 (1):(2) (1)(2) 2
sz-g b1Fag + byboF g i’ * bybyFiyFig” + boFoys

) . 1im -
w?ﬁ;e Fis ¢ has the form (A.3-2a), for 1nasmuch as Arote Fas,2k =
FiL)F

1S,1K 1) , we see that

S,1K

2y = ) o D D) g - U L s

with F§}g, etc., given formally by (A.3-2a). Note that no specific stat-
istical structure for (cs,;K,c) has yet been imposed. [Also note that

A 2y _ 2 _ .
FZ'CI€1=€2=0 = (b] + 2b;b, + b3) = (b, + by) = 1, all ar, as required.]
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Now, let us require that F§}g be given specifically by the gaussian
first-order composite form (A.3-2) and that Tgs Ty and .z , are homogeneous
processes. Then the (first-order) first- and second moments are given by
(A.3-4), as required. However, according to (A.3-7) this has been es-
tablished only for FZ-C in the limit Ar >2«=, We need now to determine
whether I (and II) are satisfied in the general case 0 < |é£|< *oo,
Accordingly, for FZ-C to reduce to the gaussian form (A.3-2) we require
EQQL,CK, %g be second-order gaussian processes, so that (A.3-6) becomes
explicitly (for these homogeneous cases)

2 imsgl+imS£2-o§(€§+£§+20551€2)
e

. . 2,2, 2.2
b e1msgl+1ngz_%[osg1+0K52+050KpSKE1£2+OSUKDKSEIEZ]
172

22 22
. b e1mK51+1mS£2 %[OK€1+0'S€2+OSOKQK551£2+OSUKDSKE152]
172

L 2(:2,¢2
2, 1M1 ek (5182 2080 5)

~0-b2

(A.3-8)
Clearly, since 4;12m pS’pKS’pSK"O’ (A.3-8) reduces directly to the form
(A.3-7), as required by II, (A.3-5). Moreover, -lsps,sz,pSK<1: these
normalized auto- and cross-covariances are, by definition, bounded as in-
dicated. In addition, the quadratic forms in the various exponents of
(A.3-8) must be at least positive semi-definite. This means that no

adjustable scale factors can be introduced as coefficients of PgsPyss etc.,
or of oé,oﬁ, etc.

Next, let us obtain the various second-order moments associated with
(A.3-8). Ing%mucg_ﬁs_gg_c here reduces to (A.3-7), with F§}g, etc., given
by (A.3-2), g = ;§= z°, (A.3-4b), in these homogeneous cases. For the

covariance KC(A:) we get directly on differentiation of (A.3-8),

2
= - e - a 2
R - P R R UL LR R L)
1 2 51‘52-0
2.2 22 .
= byogPg + byoypy + byby0goy (Pgy*oye)s (R.3-9b)
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1im
ér-»i'uo
We can rewrite (A.3-9b), using b1 = 1-b2, etc., as

which vanishes, as required, when Ar i, since Pg s (etc.) 0.

eb. o2 e - P -
Kc(éf)"blosps + bzoﬁpK + blbz{oSoK(pSK+sz) oé UK}. (A.3-11)

The behavior as Ar -0 now needs to be examined. We have for (A.3-10)

_ 2 ) ) .2 =2,
K (0) = b1°§ * byoy + byb,(2050p, °§ °i) -
(A.3-11)
- (0) _ (0)
P = Psk © s

This is to be compared with CZ calculated directly from the first-order
c.f. (A.3-2), viz. (A.3-4c):

= b, + b, + b b (mc-m,)2. (A.3-12)

)lst-order 1S 2K 1

We see at once that it is quite impossible for (A.3-11) and (A.3-12) to be
equal (b1 # b2 # 1.0) unless mg = My and pég) = o§g) = +1, with og = O
then the two (K,S) processes are second-moment identical, and correlated.
This is not at all physically likely, so we must discard it as an accept-
able model.

We note that changing the weighting, b1b2 (in such a way as to obey
11, cf. (A.3-7)), does not help us achieve agreement between var Clst
(A.3-12) and KC(O)’ (A.3-11). For example, let us replace b1b2 by
blbz(l-OSK), blbz(l-oKS) respectively in (A.3-8). This gives the correct
form for Ar-+zeo, (A.3-7), but merely inserts a factor l-pSK, 1-pgg With
Pgks Pgg 1N (A.3-10), (A.3-11), which again does not allow an equality
between (A.3-11) and (A.3-12), except in the trivial case noted above.

However, if we set b1=1 (ﬁb2=0), or vice versa, we do get agreement,
as we would expect, since only one gauss component is present. Of course,
the choice b1=1 (b2=0) gives a good fit to the first-order data except
for the important tails (represented by the K-gauss process here). In
retaining this model (Model I), we make the comparison indicated in Sec.
2.1, Eq. 2.7: we choose here a single gauss process, &, whose mean and
variance are those of the gauss composite process obeying (2.1), or (A.3-1)-

(A.3-4) above. Thus our Models la,b are taken to be a single process, with
first-order, first- and second-moments determined from the Lyon data fit (2.1).
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Before we note the implication of the above, we observe that using a
composite gauss process

0<a,,a

B * Ak (0< aj.a,< 1),  (A.3-13)

o] a

comp

rather than the gauss composite process (described by (A.3-1), (A.3-2)),
also does not permit an equivalence between the two (unless a, = 0, for

example). This is easily seen, for

:comp = dl o ! ag" a, = bl' g © mS. a2 = b2’ " = mK
(0 € bl’bZ <1) (A.3-14)
Similarly, we get directiy
- = 2 .2 + i - 12 - 2 : -
var S comp DI‘S + b? v ble ,ZKSK(O) g UK}, (A.3-15)
KSK(O) = MSK(O) - Mmemy . MSK(O) * by (A.3-15a)

From {A.3-4c) and (A.3-15), we can write

. . .2 2 2 Y .
var > comp OC - blbz {OK + 0g - ZoSoKpKS(O) + (ms mK) } > 0, (A.3-16)

with DKS(O) = OSK(O) z KSK(O)/OSOK. Consequently,

0% > bob, (02 + 0% - 20900, ((0) + (ms-mK)z} >0, (A.3-17)

2
var Zoomp 1%2 %% * %

so that var Ccanp> og (> 0) always: these two first-order processes (com-

posite gauss, (A.3-13), and gauss composite (2.1)) are not the same. We
need proceed no further in the second-order cases: the second-order forms

cannot reduce to a common first-order, (2.1).

In summary, our principal results here and their implications are
concisely:
I. It is not possible to construct a second-order gauss composite process
which reduces to the prescribed first-order process [(2.1)], having
the same second-order (and therefore, higher-order) moments.
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II.

It is possible to construct a single-component process with the same
first- and second- (first-order) moments. This is the procedure
followed in the substance of this Report, for which Model 1 is thus
essentially treated as a single-component process, cf. (2.16) ff.,
and (2.7) et seq. The moments used explicitly are obtained by a
combination of fitting to the data and physical-model building.
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